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Fundamentally, a search problem is solved by first 
considering the start state, then exploring the state space 
using the successor function, iteratively computing 
successors of various states until we arrive at a goal state, at 
which point we will have determined a path from the start 
state to the goal state (typically called a plan). The order in 
which states are considered is determined using a 
predetermined strategy.

Pathing attempts to 
solve the problem of 
getting from position 
(x1, y1) to position 
(x2, y2) in the maze 
optimally.

eat all dots attempts to solve the problem 
of consuming all food pellets in the maze 
in the shortest time possible.

A world state may contain more information 
still, potentially encoding information about 
things like total distance traveled by Pacman 
or all positions visited by Pacman on top of its 
current (x,y) location and dot booleans.

Search Problem - Basics

rational : = maximize expected utility/pre-defined goals

central problem in Al

Reflex Agent Planning Agent
based on current percept makes a decision asks "What ... if i

"

↑but without consideration of the consequences of their actions

must formulate a
must have a model of

goal (test) how the world evolves

in response to actions

can be rational : decides based on hypothesized consequences of actions.

Pac-Man in a simple content
in order to create a rational planning agent

· LBERA RIE
,
SPEOptimal solution

can be unrational : need a way to mathematically express
Pac-Man in a slightly complicated context+ hit the the given environment in which the agent will exist.

wall and lose points
must formally express a search problem

i.e. Given our agent's current state (its configuration within its environment,
how can we arrive at a new state that satisfies its goals in the best possible way ?

4 key Elements for formulating "Search Problem" :

& contains all information about a given state

2
E

E
3

4

primarily for space efficiency reasons

For Pac-Man
,

the state space is a set of possible configurations of
-where Pac-Man is and where the dots are

: the condition that you want your agent to meet
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The highlighted path (S → d → e → 
r → f → G) in the given state space 
graph is represented in the 
corresponding search tree by 
following the path in the tree from 
the start state S to the highlighted 
goal state G.

Each and every path from the start node to any 
other node is represented in the search tree by a 
path from the root S to some descendant of the root 
corresponding to the other node. Since there often 
exist multiple ways to get from one state to another, 
states tend to show up multiple times in search 
trees. 
  As a result, search trees are greater than or equal 
to their corresponding state space graph in size.

we only store states we’re immediately working with, and compute 
new ones on-demand using the corresponding successor 
function. Typically, search problems are solved using search 
trees, where we very carefully store a select few nodes to observe 
at a time, iteratively replacing nodes with their successors until we 
arrive at a goal state. There exist various methods by which to 
decide the order in which to conduct this iterative replacement of 
search tree nodes.

: An important question that often comes up while estimating the computational runtime

of solving a search problem. This is done almost exclusively withthe

fundamental counting principle , which states that if there aren variable

objects in a given world which cantake on X . X2 ,

"

, Xn different values

30 locations that could be food respectively , thenthe total number of X1. X2 ,
-

, Xn .

or no food .

123 for both ghosts
* Why don't we just keep track of only the number of food pallets left

Y
rather than going into alldetails of the locations ?

Won't be able to do planning.

only needto know the

agent position .

State SpaceGraphs/Et
& Search Trees have no restrictions on the number of times a state can appear.

nodes := states

edges := actions When we think about a node in the search tree,
we actually think of it as

a sequence of states that have happened.

Q : How can we perform useful computation on these structures

if they're too big to represent in
memory

:

The answer lies in successor functions.
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· Formalize this as a search problem where the costs of all actions are 1
.

Initial State : 10
, 0)

Actions : empty e3 : (x
, y) + 10 , y) for X70

24 : (X , y) + (x , 03 for y +0
full f3 : (x

, y) + (3
, y) for X+ 3

f4 : (X , y) + (X .
4) for y + 4

pour P3 : (x , y) + (X- z
, y + z) for x to 1 y + 41z = min(X , 4 - y3

D4 : (X
, y) + (X+ z

, y - z) for yo 1 x*31z = min93-X , 43
State Space : Set of all states reachable from the initial state

.

90 . 33 x [1 . 2
,
3 , 43 (91 , 23 x 50 , 43

= 50 . 1 . 2 . 33 x 90 . 1 . 2 . 3 . 43)41 . 23 x (1 . 2 , 3]
Goal Test : (X , Y) is a goal iff y = 2

Path Cost : Length of path
-

↑

1100
f3 f4

2 (3, 07 3(0, 4)
1 + 3 =4/5 1 + 4 =5

23 f443
24-3 P4

10
, 07 (3, 4) 10 . 3)4 10 , 03 13, 4) (3

, 1) 5

2 +5=72+ 57 2 + 3 = 5 2+ 5 = 7 2 + 5 =7 2+3 =5

24
f3 f4

P4 23
+4 e4

P3

(0
,
0 (3, 3) 10

, 4) 13 , 0 6 10, 17 (3, 4) (3 , 0) 10. 4)
3 +5 = g 3+ 3 = 63+ 4 = 7 3+ 3 = 6 3+ 1 = 4 3 + 5 = g 3+3 = 6 3+ 4 = 7

et P4
-3 f4

10, 07 13, 1) (0. 4) (1 , 0) 10, 0
4+5 =94+ 3 = 74 + 4 =84+ 1 =54+5 =8

e3
+3 f4

P3

4) 10, 1)

P4t
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Uninformed Search

fringe/2 = a data structure used to store

all the possible states (nodes) that you can go

from the current States.

A search algorithm is an algorithm that

systematically builds a search tree (hopefully

only fraction of entire search tree)
.
It has

to choose an ordering of what to currently
expand (ready to be expanded is called the

fringe , but it has to choose which one to expand
first

An optimal search algorithm is the one

that finds least-cost plans·
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Depth-First Search Breadth- First Search

we're here

·maximum depth ....
these nodes are on the fringe .

nor depth

EIGAMMB MY TREAT
KaliablyTip The space that the fringe takes contains roughly the last tier,

- so O(bS)
-ray empty initially

Visit O and put its adjacent nodes which are not

visited yet into the stack .

Nodet at the top of the stack Number of expansions :

Visit mode 1
, pop nodet from the stack and put all

· b + y + ... + ya+

+ ba + yd+
- b(O(bd)

of its adjacent nodes which are not visited inthe stack.

BFS is a complete search algorithm , which means that

it doesn't stop immediately upon finding a goal mode.

Node2 at the top of the stack
*Ad, EpinEtqueuePlMEDI

Ed+ IDEAbd
+

/G
· Visit node 2

, pop it from the stack and put all of its EEA,BEE ,BexploreAs$A (d)

adjacent nodes which are not visited (i . e. 3. 4) inthe stack. IELintB + bd+
- b

Fringe /Initialize fringe as an empty queue

stack becomes empty -> We've visited all

the nodes and our DFS traversal ends

The space that the fringe takes contains only siblings on

path to root .
i. e . Olbm)
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15) 16)

Threshold = 7 > current node value 2

S3 : explore its children
, 2 children one by one. MET (9)2At Ez Goal Node

20 children Set current node = 4 The goal path : 2 + 5 -> 6 - 8 + 15

Threshold

explore its children

(i) 5.
.

Threshold (ii) 4 Threshold

explore its children explore its children

(i) , 7 == threshold (ii)+ 8) threshold , prune

explore its children (ii)e7 == threshold

(i) ,127 threshold
, prune explore its children

(i)12 14) threshold
, prune (ii)) 13 7 threshold

, prune
(i)2 8) threshold

, prune (ii)228) threshold
, prune

20 children set current node = 5

Threshold

explore its children

(a) 6 threshold (b) 6 threshold

explore its children explore its children

(a), 6 threshold (b) , 7 == threshold

Call 13) threshold , prune explore its children

(a) 12 7 == threshold (b) 1 8 > threshold
, prune

doesn't have children (b) 12 14) threshold
, prune

lab 8 threshold , prune Ible 9 threshold , prune
Pruned Value : 12 ,

14
,

8 , 13 , S

IDDFS
trace the path from A to G

A Depth Limit = 3 :

B C O

D E

G
I BA C

2 DE
F

Time Complexity 3 CE BED G

Number of exp (Depth = d)ansions :

depth-o iteration : 1

depth-1 iteration : 1 + b

depth-2 iteration : 1 + b + b
i

depth-d iteration : 1 + b + b + ... + pd
# : d. b + (d+1) . b + ... + 3. bd + 2- ba" + bd (O(b9)

Space Complexity : O(b ·d)



IN
D
E
X

N
O
TE

T O P I C D A T E            .               .

Uniform Cost Search Cheapest First Search

GE-l

each individual

Step costs us E

UCS explores increasing cost contours.
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A

A
,

Z

A
, z , T

A , z , T. S

A , z , T. S
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Informed Search

Heuristic

14t

himich*(n) v

Greedy Search

i. e. expand a node that "heuristic"

says it's the closest to a goal state

b: = the branching factor , which indicates how many successors are there from any given mode

searched)The effectivebranchingfaisdefinedNbbthetoal number ofesa

b*: = effective branching factor (to find) , it finds the "average" branching factor of a tree
·
(smaller branching = less Searching

d : = depth of solution i
. e. search depth.
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A*

Two lists are used :

when should A
*

terminate ?

e. g . S(0 +3)

A(2+ 2) B12+ 1)

G (2+ 0) G(3 +o)

should we stop whenwe enqueue a goal ? NO
. ONLY Stop when we dequeue a goal.

Concrete Implementation : find the shortest path from S to G in the following graph:

heuristic costs

A is thecurrentmostpromising tthat

Exploring C

Exploring D

The next node in the open list is B

again. However
, because B has already

beenexplored,meanifashortestpanstain
and the algorithm continues to the next candidate

.

Exploring F

The next mode to be found is the goal mode

G , meaning the shortest pathto G has been

found. The path is constructed by tracing the

graph backward from G to S.
The algorithm continues because

there may be a shorter pathto G

Now the goal node G hasn't been found
The node B has TWO entries in

the open list : One at a cost of 18

and one at a cost of 16

he one with the lowest cost is

explored next ·
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n= 15

8 = 10
1nu G

~x
5

f = 20 8: = the accumulative cost so far .

Is At optimal ?

/ Consider the special case in which heuristic function him) = 1- fini
=> f(n) = g(n1 + hin) = g(n) + 1 -

g(n) = 1

=> Such a heuristic reduces A* search to BFS /fini I-EGREA-
BFS is not guaranteed to be optimal in the general case where edge weights

are not constant. (BFSHFAF E ELSEGEEEE)

=> At in its special case is not optimal .

Admissable/BA and Consistency
(1)

Coming up with admissible heuristics is most of Normally we can't access this value. But in Pac-Man

what's involved in usingAt in practice. In Pac-Man using "Manhattan Distance" (with wall : not true cost.

without wall : him) = h*

(n)

(2) Informal & Formal proof the optimality of A with admissibility .

Assume : A is an optimal goal node B is a suboptimal goal node his admissible

claim : A will exit the fringe before B.

Proof : Imagine B is on the fringe Some ancestor n of A is on the fringe , too Imaybe All

-> Claim : n will be expand before B
.

<:BES
S(i) -In) is less or equal to f(A)

A encodes a sequence of actions
,

as well as a sequence of states finl = fin) + hin) ( Definition of f-costthat you traverse , that get you from Sistart) to a goal state
.

There could be MANY goal states
,

and could be many paths h being admissable :=

to each of the goal states. The optimal one is the one that's fini < g(A) < Admissability of h > hunderestimates how much

shortest from the start to ANY of the goal state ; it will cost to get to the optimal
"suboptimal" means it'sA PATH to A GOAL STATE ,

however f(A) = f(A) < h = 0 at a goals goal.
not as short as the path encoded in A. (ii) fIA) is less than f(B)

2)AGABRIE <EYBEA
f(A) < g(B) < B is suboptimal

Ag]e(ii) 2Fo BRERA ?
f(A) < f(B) < h = 0 at a goal?

When B is on the fringe, A might be not on (iii) n expands before B

the fringe . 12 . g. ItexpandFREENBEADX fini - f(x) < f(B)
fringe : A*EDT. BEEXFDFEBR
DFAT All ancestors of A expand before B => A expands before B = A

*

search optimal .

less attractive)
.

When A is not on the fringe,
we know an ancestor of A has to be on the fringe .

And then we say , we are guaranteed that that

ancestor will be expanded before b , such that we

can get A on the fringe , before gets expanded.

(ERFRAILERS3)
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(3) Hi =E

XtIDEBENTERTE]-lDEA
Ribin]n- Epi

BFSFEBRIRRERiDTA , -↑ FPRibiD

E . hi]LEDAEE31E. Dir]

LExtiA

(4) Consistency - ERE

hAl h(B) ,
CES-B+ C+ GiRtYEf ,

P
DDxEyclosed set p . EP42TAFETAEE, iDR

GREGUTEE
:LEGREES

I4ABBEZ

I finiE
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'AEx
=> Lh]/ESAit
*FD. -Mt.

Dominance

-TEEEEEE ?

~ hatEYEStLME], / AA

haltiJha FEE)

:=Di

&GESERK-bEESE

EXIDTAB A
* DEFAF,

(i
. e . EABREBEGAI, Xi]]*-**: 245Search Problem

KEXPERIE, ZERAmaxFAGREE
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Heuristics for
8 Puzzle

Manhattan Distance
Heuristic A tile can move from square A to squre B , if A is adjacent to B.

Given a particular state

Consider every non-empty tile : calculate the Manhattan Distance between the current position of the tile

and the goal position of the tile
.

Add this value for all the non-empty tiles together.
↑

284
+ 3 + 1 + 2 + 2 + 0 + 2-

Misplaced Tile
Heuristic A tile can move from square A to squre B

Given a particular state , count the number of non-empty tiles that are not in their goal positions.
i

.
e

., if a tile is not in its goal position . We can move it to its goal position in one step .

1GBYPES "Misplaced Tile Heuristic Value" 757 .

Gaschnig's Heuristic

Anytile can be moved to the blank square directly , count the number of swaps.
e

.f.
Goal State Initial State Initial State

12 3 628 b 2 3 2 2213 131 3

84 g 4 35 85 85 84

65 7 417467757 65 4 17 6

n = 0
.

h = S n=7 h = 4 n= 0

Suggest a way to calculate Gaschnig's heuristic efficiently.
e.f.

Initial State Goal State Goal : 012345678

628 123 362857140
O 3 j 804 1038) /163(2)(457) "Cycle Decomposition

"

417 765

Suppose that U, ". Um are all the cycles generated
Let S(V) := numbers of Gaschining's moves needed for cycle V.

Irl : = length of cycle V
-

Then : S(r) = 0 If IVl = 1

Irl-1 if Irk 1 and Blanker+
1 if Ivk 1 and Blank EV IGRABED1BlankFXpermutation )
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an
variables usually represent some quantities of abstractions that we try to reason about

a set of values

Planning FR*Y Identification i,)

Heuristics give problem-specific
guidance .

key The path (i
.
e. Sequences of actions) to the goal The goal itself (i.e. assignments to variables) , not the path

paths Paths have various costs , depth. All paths at the same depth (for some formulations
Standard Search Problems

CSP := a specialised class of identification problems
Assumptions about the world :

:= a special subset of search problems
a single agent (You

- fully observable states
i

. e. partial assignment

State itself is a black box
,

the only things that State is defined by variables Xi with values from
you can do to a state are "getSuccessor/1 :

"

a domain D /Sometimes D depends on i we can

& "isGoall1 :
"

peek inside the states

· deterministic actions Successor function is "assign a new variable"

Successor function can be anything Goal Test is constraints) specyfing allowable combinations

and Goal Test can be any function over states of values for subsets of variables.

Allows for useful general-purpose algorithms with more

Varieties of Constraints

an
a

power than standard search algorithms.

GEDGA (GERIGABEB25H

Real-World CSPs
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Map Coloring Givenasetofcolor, that no two adjacent states (or regions) have the same co a

CSPs are often represented as Constraint Graph/(nodes : = variables

edges : = constraint between modes.

IMEGER1Y
EAR:

·↳: I (pedge) or
·

<ANTED ABAZRED : Tree search

E : E

·
-

Solving CSPs

Standard Search Formulation of CSPs

· Method 1 (naive) -E At

WRITER Extin ? (FEtn'REB ? )

↳A MARIE . FESthIPREnvalue ?

F-RE
↳ADIDAPRERR

, MILP
ERPRETE , DARE-i.En*-EGREERR, I

partial search tree for DFS partial search tree for Backtracking Backtracking -A PARADIS : DFSEMEGE
FERF, PETER Etr , LelEhlDiPE

:BacktrackingSEER
2. -FREEB
PERS , RYDD- EtEn-4EtiB-FRE

↑
1 JEEEBSI forwardcheckingent
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Method2 Filtering : Can we detect inevitable failure early ?

keep track of domains for unassigned variables and cross off bad options.

Naive method for Filtering Forward Checking/TB
Cross off values that violate a constraint when added to the existing assignment.

(1) Idea: DAR. READ-AbiE).

Forward Checking/EF
REEEEEEEE.

Whenever a value is assigned to a variable Xi ,
Forward Checking prunes the domains of the unassigned

variables that share a constraint with Xi that would violate the constraint if assigned.
(2) e. g.

assign WA = red -> the size of the domains for NT and SA decreases

assignc= green -> the size of the domains for NT
, SA and NSW decreases

NEEForward CheckingFitt, GEEDIR Forward Checking ,
NTADSAGEt BENEGB.

=> We need to reason from constraint to constraint /constraint propagation

Arc Consistency / BT

(1) Idea : CSPRE undirected edge (FL) zpE two directed edges pointing in opposite directions (IFESDAAREATR)

-**TERD41FarC LETu

(2) Arc Consistency Algorithm :

BLBQAtREDE.

· AZE :

FX: GEV. IXERAXJREYA-OTEW . M * Xi = 0 , Xj = W

GARIEPEYJ

& E ***XIV, ]XjEWER , ABhXiMJMEtiPFB

Xj Xi If this is the case . BingXi RETEXK
,BERX-XiM=

CitDXBLE]& : *LPETTtGXk - Xi
, PlRiDD .

Remove- Inconsistant - Values ETHEY R ?

DRIPGGATH, EEE-RE, HALLRIPANB-FBTM
↳ A3ei; nEi]WBMDDIDQ :

-> e &E Xi EtiPA-ERADYBAF , i) BTMENDR

DDO
. (i

. e . EEFERPTEDDarcs) IE

3 ed F
. EdiJETarcGDDEBLBY diR

=> ERAetedi

AMEGAGEt

ERLLBLIERE - TEGLh]AE , thi:Bu

FedE
↓

HEATE, MULTRAGEd
E-ERE.

->
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13) e . f .

tail head

SA + v OK EPADY

V + SA AMYBVDblue
, EPADY

EGALVE head BIM

DRXQ . EPSA-V , NSW -V
.

AJNSW-VETRIP ,E
DDXSAzv

#

E

(4) Limitations of arc consistency.

(5) Improvement : K-consistency (K-A

Arc Consistency is a subset of a more generalized notion of I-consistency

K-1RBEREFA-

AGRE
. higher k is more expensive to compute
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· Methods Ordering/FEE
TERE,EDE (On the fly) F-HERtLHERBETTA.

*E(MRV) /GRE/LCV)

Minimum Remaining Values Least Constraining Value

URUZT-AF,GREYE TrEfEFFESEEEAF , select the value that prunes the fewest values from the domains

unassigned variable
.
(EPBE.

EnE of the remaining unassigned values.LA'**AGARRBYvaLueE .

Eti

i. BRIDGE.
FR . EXTRA, EDEBTLBIDE

.

It
. · RE . ADEGGERTEATAArunning arc consistency /

"fail fast" ordering forward checking or other filtering methods for each value to find (CK) PEADREPEREA ,
PJi

_

ESPA,R

Method 4 Exploit Structure

(1) Idea

(2) e. g. Tree-structured CSP , one that has no loop in its constraint graph

FiEFDLFEEDASDD PETATDFEELSEAGE
LIFE"FEEEE")

trunk

Remove Backward I make the arc pointing to mode Xi consistent

a b C

*i] FANB "To " At unconsistent

values , qupropagation Ot, ED

BCOSTE

Assign Forward
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min-max is depth-first search.

the worst that the maximizer is willing to accept

2= - x 2= - x

B = + b B = + b

2 = - A 2 = - A
3

B = + 5 B = 3

2 = 5

↳ 2 = 3
3 45 B = 3

B - + D
-

- I 3 5

5(21 - b)

G 2 : = 5

2 = - A 2= 3

B = + 5 B = + b

2 = - A
3

2 = - 1
B = 3

B = + D

2 = 5
- I 2 = 3

- 1) X( - b) B = +
3 45 B = 3

2 : = - 1

2= - x - I 3 5
B = + b

57 21 - b)

2 : = 5

2 = - A 2= 3

B = + 5 B = + b

2 = 3 2 = - A
3 Gb

-B - + D

B = 3

- I 3
x = 5 2= 3

2 = 3
3)x(- 1)

B = +
3 458 = 3 - 48= + 1

2 : = 3

2= - x - I 3 5 - f - 4
B = + b

5(21 - b) - 6(2(3)
2 : = 5 - 4 < 2(3)

2 = - A 2 doesn't change
B = 3

2= 3
2 = 3

3 B = + b

B = + D

- I 3 2 = - A
2= 3 2 > B , prune

B = 3
3 154B= - 4

2= - x 2= 3
2 = 3

B = + b
B = +

3 25 - 4B= + b

2 = - A
- I 3 5 - 6 - 4

B = 3

2 = 3 2 =
- 1

2= 3
3 B = 3

B - + D
3 B = + b-

- I 3
2 = - A

2= 3 2 > B , prune

B = 3
3 154B= - 4

2= - x 2= 3

B = + b 2 = 3 < - 4B= + 1

B = +
3

2 = - A

B = 3
- I 3 5 - f - 4

↓ B , prune

2 = 5
2 = 3

3 45 B = 3

B - + D
-

- I 3 5

5(21 - b)

2 : = 5

A GAPBRDGAGAXE .

ABALBTValue DIGARA'XB B GBE/B GABLEBEE
* A 2 B . BREAAGATAZE already a better option

↳A GAS
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1

. Formalizing argument validity : Semantic Entailment

/If every model of SP..... Pub is also a model of 2

TAKE KB Elin""
↑-YatEYFAKBEG"D"

i
. l. Resolution,

↑ERIL-PDSRE
2. Proving or disproving Entailment

11) I I entails & ,
denoted - 2croving

I

e
. f.

Using truth tables to prove entailment does NOT work for FOL.

II
.

At B
,

A

2. f .
(i) Semantic proof of B

- e

Suppose that I =

because of the two assumptions , we have I A- B and I A

By definition ,
the Statement I A-B means that

I B whenever I A
, so I B

(ii)

I= < D .Q
0 Constants : DINJIED (Mar) ED

Functions : P(Parent) = D+ D

Predicate : 9) (Sister) &DXD
I

VIXI = v(X) (for every ↓) FITTERNEUF , TX DAEUDIXERE
I

,

r ll- + , ,
. . ., full = Hid, ..., dn)

, where H = P(f) and di = 1
,

vlltill crecursively
-① (Daughter) EDXD

&*fCAJURt ,

" -tr
I It DFEARTT

9) (Female) D di EITDTREUF , DAE

Premises : O Daughter (NJ , Parent(Mar)
② Sister (NJ

. Marl
2 Daughter (X . Y) Female (x)1 Y = Parent(x)1 Y + X

↑ Sister (X , YI Female (x) 1 Parent(X) = Parent (y) ~ Y X
kB = 50 ,

2
,
B

, DI
Claim: KBL /NJ = Marl

Proof : Let X= P(NJ) , B = /Mark
V : Ill Parent(mar)/1 = P(Parent(d/Mari) = P(Parent(B1) 5

IF 1 <X , v) e @ (Daughter 6

If < < X , B) #P (Sister 7

If3 (d,
d Ed (Daughter) iff de $(Female) 1 d=d/Parent(d)) 1 d+ d' 8

If < (d,
d EP (Sister) iff dEP (Female) 1 P(Parent(d)) = PlParent(d') 1 d+d' S

From 6
,

8 : <X , v) e $(Daughter)
Female(2) 1 V= Parent(2) 1 2+* 10

From 7 : < 2 ,B) (Sister
~ /Female (2) 1 Parent(2) = Parent (B) 12 = B)
~ Female (2) V Parent(2) + Parent (B) V L +B
-

does not hold
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(iv)

↓ can prove this with truth tables

L=Biff 2= B and B72
(Proof by contradiction

4) GEB is valid iff B and arevalst

For all interpretations I.

I F(xUB) 1 IF BUGl

(CIF-2) v(IFB)) - (IFB) v (IFal)

((IF - 2) v (IFB))n(IF (B)
V

((IF -2) v(IFB))n(IF2)

(IF (a) 1 (IFLB) v (IFB)r(IFal
For all interpretations , IF2 if IF B .

Mod(2) = (1) I is an interpretation s.t.. If23
= Mod(B) = (1) I is an interpretation s.t.. If B)

Mod(2) = Mod (B)
2 and B are equivalent

5) By definition ,
&1 -B is unsatisfiable means that there is NO Interpretation I

, St. IF21
For all interpretations I

, I#21B is valid

For all interpretations I IF + (x11B)

For all interpretations I
. IF 7 v7 &

For all interpretations I
, If L vB

That means for all interpretations I
, "XvB is valid

for all interpretations I
. IF 2 &

#
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Given a set of inference rules (e.g., modus ponens), we 
can just keep on trying to apply rules. Those rules
generate new formulas which get added to the knowledge 
base, and those formulas might then be premises
of other rules, which in turn generate more formulas, etc.

Inference Rules MERRY
not yet specified
whether it's valid

1

. Definition
fi . . . . f

Y
premises

If fi , , fi . 8 are formulas then the following is an inference rule : 8 conclusion

* P , % : EPA
2. Modus Ponens (4) Inference Rule : P. P+ &

Get

For any propositional symbols p and g:
G

More generally :

P"" - Pi
,
In ... nP e

e
.f. Rain : It's raining. Rain ,

Rain - Wet

Rain-Wee : If it's raining , then it's wet. 3 Wet

Wet : Therefore , it's met.

3. Inference Algorithm :

kB derives/proves 2 (kB + al

iff 2 eventually gets added

to kB ( by blindly applying rules)

* The rule says that if the premises are in the KB,

then you can add the conclusion to the KB
.

~ HJFEGEERY Modus Ponens EBEEE)

44.

semantics gives us an objective notion of truth.

The set of satisfiable models

for formula f

#DEERRF3-ALE. CELTEIA/repeated application) ERR , EJULE-EE formulas i .
e

.GHDBZDEANE
[f(kBrf) -BAGERPRETA*SE ?

e
. g. [ ..., P18(1) , f(x) , 2)] [rply , fiw , al

.
...

unifiable with

0 = 5X/b , y/g(b) · z /a · w/b)] Yields pigibil , fibs ,
a) 3 Sometimes [I is not derivable

because of too specific substitutions.
but also with

82 = (x/f(z) , y/81 fiz) , z/a , w/fiz)] yields P(81 f(z)) , +(f(z) , a)

· Most General Unifier /MGU) -E- MGUFEED-ERS-EBIEEJE .

O is a MGU of the Literals 1, and ↳ iff
O Unifies (, and ↳ PEATLP1, **P1 META FRF

EAO-E
"

for every unifier O' , there is a substitution
*

S.t.
0= 00

*

IEEE-DO : RESULTOTARO* i
. e . /JEunifierBROAA-YEA .

If I is a literal
.

O is a substitution
, then IO is the result of the substitution

If C is a clause O is a substitution
, then CO is the result of the substitution

e.f. O = Ex/a , y/gix , biz) P(X , z
, fix , y))0 = Pla. z

, fla ,y)
a Ground Literal : = a literal without variables

A Literal I is an instance of I if there is a O S.t . I= I
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EPFEI-4, SGDL ALEREFATA.

ART

# E "DIEL"DS :

DSD:= t ·l]BLPT1-ER

AEDSIP--
Et (IE)

GARE2

[ ..., P1f(x)) , f(x) ·
2)] [rply , fiwl , al

.

... ] GMGU :

S2 : DS = Eg(X) , Y ,
X , W , z , a)

S3 : 0 = (y/8(x))
S4 : OBY9E [ ... , P1g(1) · f(x) , 2)] [MP(gi) , fiwi , al ... ]

↓

S2 : DS = [x , w . z , a)
S3 : 0 = [x/w3
S4 : [ ..., PIg(s) · f(w) , 2)] [MPIgins), fiw , al ... ]

↓

S2 : DS =(z , a)

53 : 0 = [7(a)
S4 : [ ..., P1g(s) · fiw , al] [rpIgins), fiw , al ... ]

=> 0 = (x/w , y /g(w) · z(a)
0 = (x/b , y/g(b) · z /a · w/b)] = 09w/b3
02 = (x /f(z) , y/8( fizi) , z/a , w/fizl] = OSw/fiz1]
XIRE

-

Caset : We never overflow the glass Case2 : we fill up the glass to the brim

Thetruth and possibly go over

By applying Inference Rules

we're filling up theglass with water

nothing but the truth

sound : not derive whole truth

any false formulas
complete : derive all true formulas

Every derivable sentence is a logical

consequence of the kB Every logical consequence of the KB is derivable

by the inference method.
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~

We can derive Wet using modus powers

To check Entailment :

map all the formulas into semantics - Land

(i
. e.

the set of satisfiable models

Ifwe had other formulas in the KB ,
that would

reduce both sides of [by the same amount

and won't affect the fact that the relation

holds. Therefore , this rule is sound. make the water glass smaller

X

pour more vigorously into the same glass
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1
. Resolution Rule in Propositional Logic

· MERRIERIELEPNF) ,
I BETAF/7) APTE'GA - T95

Resolution Rule in Propositional Logic is a single valid inference rule that produces a new clause

implied by two clauses containing complementary literals.

the left resolved literal
the right resolved literal

-

CUSp3 , Srp3UC
mus entails CU C2

the resolvent of the input clauses relative to up

1JESEAFEDYGEL"IDT EXFOBSES /resolvent)
"

Special Case : [P) and [mp) resolve to [S (i . e
.

C, and G are empty
Hence [Ips . [rps3 F False , or <Ips . [rps) is unsatisfiable .

EDRATILASERRY2REFA
, MASTERPTER

· Theorem : S + 1] iff SFFalse (i
. e. S is unsatisfiable iff S + + 3)

Resolution is sound and complete for []
· If S - C , then SFC (reverse does not always hold

Resolvents are implications of the input clauses.

Finte Major Premise UX
, P(X) -> O(X)

2. Resolution Rule in FOL At Minor Premise D(a)

S Conclusion Therefore · O(a)
· KEEFRIRIEYESEES Inference RuleA Fre (Syllogism) :3-4-ERR
Al, <I>FIXEDF/CNE) <IDR

<ii) LL4FE-F) :

· FERESAAFD : -MIDEAS , TB-1 IDETED , NETEBOLEN-
P-Atip , any unbound variables also occur in other predicates :

replace them with their bound values (terms) there as well.

i
.
e.: Clauses with variables :

A literal with variables represents All its instances. We allow inference over all instances.

Hence , given: [P(X , a) , VO(X1] and [rp(b,y) , ~R(b · f(y))]

Since [P(b, a) , volb1] is an instance of [P(x , a) , vO(X)]

[mp(bial , vR(b · fail] is an instance of [vP(b , Y) ,
~ R(b · f(y))]

We'd like to inter [ro(b)
, ~RIb

, fail]
· EE-AE, FDYFIR FRAD -15.Ar

Resolution Rule can be generalized to FOL to :

C, USI3 , SvIz3UG
giCuca)0

where O is a MGU of I
,

and In If two different clauses C , and C contain same variable X,

and C, and C have no common variables we canrename X to some other X in one of C or C2.

Unifying &(X) with < Oly) means that

e . g.
1 P(X)vO(X) X and y become the same variable anyway

XX
, P(X) -> Q(X) (i) ~ acy) vR(y) Substituting this into the remaining clauses

XX , Q(x) -> R(X) X*Rto make it clear that and combining them gives the conclusion :

variables in different clauses are different < P(X) VR(X)

InP: 'X' is an unbound variable

XX
, P(X) -> Q(X)(i) P(X) VQ(X) (ii)

E a is a bound variable (term)

P(a) P(a) Unifying the two produces the substitution x/a

-AAP , *FREE*T GER(X)

IEEE Ocal



POP: A Partial-Order Planner
In this lecture, we look at the operation of one particular partial-order planner, called POP. POP is a regression planner;
it uses problem decomposition; it searches plan space rather than state space; it build partially-ordered plans; and it
operates by the principle of least-commitment.

In our description, we’ll neglect some of the fine details of the algorithm (e.g. variable instantiation) in order to gain
greater clarity.

1 POP plans

We have to say what a plan looks like in POP. We are dealing with partially-ordered steps so we must give ourselves
the flexibility to have steps that are unordered with respect to each other. And, we are searching plan-space instead of
state space, so we must have the ability to represent unfinished plans that get refined as planning proceeds.

A plan in POP (whether it be a finished one or an unfinished one) comprises:

• A set of plan steps. Each of these is a STRIPS operator, but with the variables instantiated.

• A set of ordering constraints: Si ≺ Sj means step Si must occur sometime before Sj (not necessarily immedi-
ately before).

• A set of causal links: Si
c−→ Sj means step Si achieves precondition c of step Sj .

So, it comprises actions (steps) with constraints (for ordering and causality) on them.

The algorithm needs to start off with an initial plan. This is an unfinished plan, which we will refine until we reach a
solution plan.

The initial plan comprises two dummy steps, called Start and Finish. Start is a step with no preconditions, only ef-
fects: the effects are the initial state of the world. Finish is a step with no effects, only preconditions: the preconditions
are the goal.

By way of an example, consider this initial state and goal state:

Initial state Goal state

a b

c

a

b

c

These would be represented in POP as the following initial plan:

Plan(STEPS: {S1: Op( ACTION: Start,
EFFECT: clear(b) ∧ clear(c) ∧

on(c, a) ∧ ontable(a) ∧
ontable(b) ∧ armempty),

S2: Op( ACTION: Finish,
PRECOND: on(c, b) ∧ on(a, c))},

ORDERINGS: {S1 ≺ S2},
LINKS: {})

1

This initial plan is refined using POP’s plan refinement operators. As we apply them, they will take us from an
unfinished plan to a less and less unfinished plan, and ultimately to a solution plan. There are four operators, falling
into two groups:

• Goal achievement operators

– Step addition: Add a new step Si which has an effect c that can achieve an as yet unachieved precondition
of an existing step Sj . Also add the following constraints: Si ≺ Sj and Si

c−→ Sj and Start ≺ Si ≺
Finish.

– Use an effect c of an existing step Si to achieve an as yet unachieved precondition of another existing step
Sj . And add just two constraints: Si ≺ Sj and Si

c−→ Sj .

• Causal links must be protected from threats, i.e. steps that delete (or negate or clobber) the protected condition.
If S threatens link Si

c−→ Sj :

– Promote: add the constraint S ≺ Si; or
– Demote: add the constraint Sj ≺ S

The goal achievement operators ought to be obvious enough. They find preconditions of steps in the unfinished plan
that are not yet achieved. The two goal achievement operators remedy this either by adding a new step whose effect
achieves the precondition, or by exploiting one of the effects of a step that is already in the plan.

The promotion and demotion operators may be less clear. Why are these needed? POP uses problem-decomposition:
faced with a conjunctive precondition, it uses goal achievement on each conjunct separately. But, as we know, this
brings the risk that the steps we add when achieving one part of a precondition might interfere with the achievement
of another precondition. And the idea of promotion and demotion is to add ordering constraints so that the step cannot
interfere with the achievement of the precondition.

Finally, we have to be able to recognise when we have reached a solution plan: a finished plan.

A solution plan is one in which:

• every precondition of every step is achieved by the effect of some other step and all possible clobberers have
been suitably demoted or promoted; and

• there are no contradictions in the ordering constraints, e.g. disallowed is Si ≺ Sj and Sj ≺ Si; also disallowed
is Si ≺ Sj , Sj ≺ Sk and Sk ≺ Si.

Note that solutions may still be partially-ordered. This retains flexibility for as long as possible. Only immediately
prior to execution will the plan need linearisation, i.e. the imposition of arbitrary ordering constraints on steps that are
not yet ordered. (In fact, if there’s more than one agent, or if there’s a single agent but it is capable of multitasking,
then some linearisation can be avoided: steps can be carried out in parallel.)

2

postpone commitment unless forced

It-

conflict demotion
promotion



2 The POP algorithm

In essence, the POP algorithm is the following:

1. Make the initial plan, i.e. the one that contains only the Start and Finish steps.

2. Do until you have a solution plan

• Take an unachieved precondition from the plan; achieve it
• Resolve any threats using promotion or demotion

But what the above fails to show is that planning involves search. At certain points in the algorithm, the planner will
be faced with choices (alternative ways of refining the current unfinished plan). POP must try one of them but have
the option of returning to explore the others.

There are basically two main ‘choice points’ in the algorithm:

• In goal achievement, a condition c might be achievable by any one of a number of new steps and/or existing
steps. For each way of achieving c, a new version of the plan must be created and placed on the agenda.
Question. A condition c might be achievable by new steps or existing steps. When placing these alternatives on
the agenda, why might we arrange for the latter to come off the agenda before the former?

• When resolving threats, POP must choose between demotion and promotion.

(Some people think that the choice of which precondition to achieve next also gives rise to search. But, in fact, all
preconditions must eventually be achieved, and so these aren’t alternatives. The choice can be made irrevocably.)

Provided your implementation of POP uses a complete and optimal search strategy, then POP itself is complete and
optimal.

However, POP’s branching factor can still be high and the unfinished plans that we store on the agenda can be quite
large data structures, so we typically abandon completeness/optimality to keep time and space more manageable.
Search strategies that are more like depth-first search might be preferable. And we might use heuristics to order
alternatives or even to prune the agenda.

In the lecture, we will dry-run the POP algorithm.

Afterwards, convince yourself that POP is a regression planner, that it uses problem decomposition, that it searches
plan space, that it build partially-ordered plans and that it operates by the principle of least commitment.

3

START

clear(b) & clear(c) &

ontable(b) & armempty
on(c, a) & ontable(a) &

UNSTACK(C, A)

¬on(c, a) & ¬armempty &
¬clear(c) & holding(c) &

clear(a)

on(c, a) & clear(c) & armempty

STACK(C, B)

¬clear(b) & ¬holding(c) &
armempty & on(c, b) &

clear(c)

clear(b) & holding(c)

clear(c) & holding(a)

clear(a) & ontable(a) & armempty

PICKUP(A)
¬ontable(a) & ¬armempty &

¬clear(a) & holding(a)

STACK(C, A)

¬clear(c) & ¬holding(a) &
armempty & on(a, c) &

clear(a)

FINISH

on(c, b) & on(a, c)

on(c,a), clear(c), armempty

clear(c) ontable(a)

clear(b)

clear(a)

holding(a)

armempty

holding(c)

on(a, c)

on(c, b)

4

Start & finish

2) ActionR: EAS pre-con



Exercise (Past exam question)

1. An A.I. planner operates in a simplified Blocks World. The only operators in its repertoire move a block x from
the table to another block y:

Op( ACTION: FromTable(x, y),
PRECOND: onTable(x) ∧ clear(x) ∧ clear(y),
EFFECT: ¬onTable(x) ∧ ¬clear(y) ∧ on(x, y))

and move a block x from block y to the table:
Op( ACTION: ToTable(x, y),

PRECOND: on(x, y) ∧ clear(x),
EFFECT: ¬on(x, y) ∧ clear(y) ∧ onTable(x))

Here is an incomplete plan of the kind that could be built by the POP planner covered in lectures:

¬on(a, b) ∧ clear(b) ∧ onTable(a)

Start

Finish

onTable(b)
clear(a) on(a, b) ∧ clear(a)

clear(a)
on(a, b)

clear(b)

ToTable(a, b)

FromTable(b, a)

on(b, a)

on(b, a) ∧ on(c, b)

order constraint

c

on(a, b) ∧ clear(a) ∧ onTable(b) ∧ onTable(c) ∧ clear(c)

onTable(b) ∧ clear(b) ∧ clear(a)

¬onTable(b) ∧ ¬clear(a) ∧ on(b, a)

precondition c

order constraint and
causal link for

(a) Give the initial world state and goal of this plan.

5

(b) Copy this plan onto your answer sheet. (Copy just the boxes and arrows; there is no need to copy the
preconditions & effects.)

• Choose an unachieved precondition in the plan.
• Add a new step to the plan to achieve your chosen precondition. Draw it onto your copy of the

diagram. Include its preconditions & effects, all order constraints and all causal links.
• If your new step threatened any existing causal links, then state which link(s) were threatened; state

what extra ordering constraint(s) you added to protect the threatened link(s); state whether what you
did was an example of promotion or demotion; and briefly explain why the extra ordering constraint(s)
fix the plan.

(c) Is the plan now complete? Explain your answer.

2. Write STRIPS operators that would enable a planner to build plans that it could give to photocopier repair robots.
Use the following predicate symbols:

copier(x) : x is a photocopier
robot(x) : x is a robot

noToner(x) : x has no toner
hasToner(x) : x has toner

hasPaper(x, n) : x has n sheets of paper
at(x, y) : x is at y

You can also use the predicates <,≤, >,≥ and =, the function symbols + and − and the constant symbols 0
and 1 if you wish, all with their usual meanings from arithmetic.
You should write the following three operators:

• replaceToner(x, y): To replace the toner, the copier (y) must be out of toner, a robot (x) must be at the
copier and it must have some toner, all of which it puts into the copier.

• insertPaper(x, y, n): To put n sheets of paper into the copier (y), a robot (x) must be at the copier and
it must have at least n sheets of paper. (You should assume that the copier has no maximum amount of
paper.)

• makeCopy(x, y): To make a copy (using up one sheet of paper), a robot (x) must be at a copier (y) that has
toner and that has at least one sheet of paper.
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. e
. plan steps with unfulfilled preconditions

It does NOT matter in which order subgoals are chosen when

looking for a solution.


