e Seaveh Problem - Basics DATE

TazonaL ;= oimioe. expectenl uriG e-gegineol. Soaug

centvol Piovlem in AL

In artificial intelligence, the central problem at hand is that of the creation of a rational agent, an entity that
has goals or preferences and tries to perform a series of actions that yield the best/optimal expected outcome
given these goals. Rational agents exist in an environment, which is specific to the given instantiation of]|
the agent. As a very simple example, the environment for a checkers agent is the virtual checkers board on
which it plays against opponents, where piece moves are actions. Together, an environment and the agents
that reside within it create a world.

Reftex Agont P\ommng Agonr
kaseol on. cuent Percept mokes o olacision asks " what 'F i‘f 3 ’

bust, ‘withowt, Considavotion of tha consequences of hair actions s o TUSE howe A madlel

Qoal (test) how the worldl evolves
(. Tesponse 10 ocrions
Con b2 YOtiohal : oleciolts based on. hypownesiaeol corsequonces of Octions.

* fac-Man in & simple cortent

o oA RA RRE M M FRURE. TR optimol, soluion
o be woationad, : Need. 0. Way w nothamaticosy express

* PocMon i o stigity complicasen]. context, = Wik, the e giuen eNUTONIMaNt K Winith, $1e ofemt o st
Wall onol lese Pointg

i o1t +o crepr O | yotional Plonning ogerd

considering the start state, then exploring the state space

Fundamentally, a search problem is solved by first & muss 'fa f j eKngs a|o Sea.’cbl P.'o'b] m<<

using the successor function, iteratively computin . . N . - N
succgessors of various states until we a):rive apta ggal state, at {.2. Given owy oiiﬂb/g aurresnt, stodt’ (it CUI\{\S\L"W’L Wi (€8 environamant,
which point we will have determined a path from the start how con. we arrive cuew o -thot s’at,tsf:es vy 3001—3 dethe best ‘POWI'IO\(waﬂ K
state to the goal state (typically called a plan). The order in

which states are considered is determined using a

predetermined strategy.

4 Key Elamants or o mdlatig " earein. Problem” :

Example: Traveling in Romania What’s in a State Space?

= State space: TOTOUNS CUL ¢ 7OTYNOGON. OO X gibeﬂ. O
= Cities The world state includes every last detail of the environment
= Successor function:
= Roads: Go to adjacent city with E
cost = distance A world state may contain more information E\J _______________

- 3 still, potentially encoding information about
SIAISIALR; things like total distance traveled by Pacman
or all positions visited by Pacman on top of its
= Goal test: current (x,y) location and dot booleans. SCORE: leat all dots attempts to solve the problem
of consuming.all food pellets.in the maze
in the shortest time possible.

= Arad

= Is state == Bucharest?

® Solution? A search state keeps only the details needed for planning (abstraction)
'Pvl'maﬁb fr spce afticl Tenson3
= Problem: Pathing = Problem: Eat-All-Dots
E;'J'e'qﬂ:ﬁf‘)”g‘l’e‘fn";f = States: (x,y) location = States: {(x,y), dot booleans}
tting from positio A a i a
fz"y?) ;o";:;m('):] " = Actions: NSEW = Actions: NSEW

g‘;iﬁl;‘ the maze w Syccessor: update location = Successor: update location
only and possibly a dot boolean

= Goal test: is (x,y)=END = Goal test: dots all false

« A state space - The set of all possible states that are possible in your given world Foy Pac-Aan . the swote oz s o set ’j ~PO§§\‘ ble. eonﬁgwm Of

. . . whave Foe-Mom (wheve. the dots .
* A successor function - A function that takes in a state and an action and computes the cost of per- Poc-Mon is o he are

forming that action as well as the successor state, the state the world would be in if the given agent
performed that action

A start state - The state in which an agent exists initially

* A goal test - A function that takes a state as input, and determines whether it is[a goal state]: tho Conclition thazt Yow want Youy ogent, to meet

X30NI

310N

TOPIC DATE

State Space Sizes? : An imporioats question o often. comes wp while estimating +he. computotional, Turtime
of Suing a SeCh. prodlem. . ‘This 1S olone. alitest excsively with the

Counting DUALPR , Wit StODes that & ave. 1L Vordble
obLeobc i o giuen Worldl Witich, Con-toke on %. Ka, =+ % clifferent ualues
Tepectively | thon-the total number of X, % . Yo

% Why olon't we Just Reep teck of ony the. number of {oeol patiers lefs
108hey Than. Jaing 0 OLLALLAIS of the leCotions 7 aons; 1 gxole +c,/do Panning

= World state:
= Agent positions: 120
Ao locoxtions thats cowtdl be. oo
= Food count: 30 or 10 foodl
= Ghost positions: 12 127 for bown ghosts
= Agent facing: NSEW

®* How many
= World states?
120x(23%)x(122)x4
= States for pathing? onl need o know
120 agm StHTon.
= States for eat-all-dots?
120x(23°)

(S’ octe. S Brophs [AREEi
O-Phs ARG
8 &P&f:ch Trees

_ This is now / start

State Space Graphs w10 10
/ , 1.

t 1 t
Possible futures
= State space graph: A mathematical ! — n — E E n _
representation of a search problem - -
= Nodes are (abstracted) world configurations mocles := stctes T /l\ /l\
= Arcs represen.t successors (action results) eclfes := pptions ™~ u . u / when we think about @ noda ¢A the Seprch 'VTQQ,
= The goal test is a set of goal nodes (maybe only one) P N / m;f)a think, 9* % as
E = Asearch tree: A Seguence Of Sto4es thow hawe hoppenasl..
= In astate space graph, each state occurs only i n = A“what if’ tree of plans and their outcomes
once! o HIN B . E e \. whatt P
\ = The start state is the root node
= We can rarely build this full graph in memory e l = Children correspond to successors
|

it's too big), but it’ ful id ‘ .
(it's too big), but it's a useful idea ! he E = Nodes show states, but correspond to PLANS that achieve those states
| |

= _For most problems, we can never actually build the whole tree

N

State Space Graphs vs. Search Trees

S S Graoh Each NODE in in (
The highlighted path (S — d — e — tate Space Grap the search tree is Search Tree Each and every path from the start node to any
r— f — G) in the given state space an entire PATH in other node is represented in the search tree by a
graph is represented in the the state space —/’_SN path from the root S to some descendant of the root
corresponding search tree by graph. J @ p corresponding to the other node. Since there often
following the path in the tree from —_— — . exist multiple ways to get from one state to another,
the start state S to the highlighted b ¢ e h r q states tend to show up multiple times in search
goal state G. A p/\q 5 trees.

We construct both —~ 5 — As a result, search trees are greater than or equal

on demand — and p q f q ¢ G to their corresponding state space graph in size.

we construct as q :\G a

little as possible. K .
a

= How con we peffvm tseful. Compuration. ON thse Strucwees
f they're 0 loig o mefmesent, in memony 2
— 7he Qvdwer (les i SUCCRIR0Y formCHionS.

we only store states we’re immediately working with, and compute
new ones on-demand using the corresponding successor
function. Typically, search problems are solved using search
trees, where we very carefully store a select few nodes to observe
at a time, iteratively replacing nodes with their successors until we
arrive at a goal state. There exist various methods by which to
decide the order in which to conduct this iterative replacement of
search tree nodes.

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph How bigis its search tree (from S)?
/o

Pe s

/ i N

G © NN

\\ - b Ga G
\ VANAN
RO, a G é G

Important: Lots of repeated structure in the search tree!

X30NI

310N

TOPIC DATE

Consider the “water-jug puzzle”:

There is a 3-liter water jug and a 4-liter water jug. At the beginning, both are empty. At
the end, the 4-liter jug shall contain exactly 2 liter. A jug can be emptied or filled with
water (completely). Water can be poured from one jug into the other. This must be done
exactly until one jug is empty or full.

* Formaline €his as o Search. Problem where 4he CostS of QUL Actons ave 4.
Inital Stowe: (0, 0)
Aotions = empty - €%: (N = (0y) for x20
ew: (%Y1= (x0) v y+0
fud 3 (6> 3,) for X#3
e () = (xu) for 7#&
Pour pd:i (A y) ™ (w2, Y1) for X#0 AYEGE A 2=mindx, G-Y3
P (xy) 2 (Xt3, y-3) for Yoo A AFD N 2=min§3-%, ¥3
State Spa : Ser of AU Stotes Tenchable {Ffom e il St
Jo,35*fu2.3.43 U 51,23 x §0,43
= Jonazfxfon23, 6§\ 123« {123]
Good Test: (XY is a goal Hf Y=2

Poti Cost: Lengin o posin

The following is true for that problem in every state except goal states:

If the 3-liter jug is full, then at least 3 steps are necessary to reach a goal state. If
the 3-liter jug is empty and the 4-liter jug contains z liter, then at least x steps are
necessary to reach a goal state. If both jugs are full or both jugs are empty, then at
least 5 steps are necessary to reach a goal state.

Use this (and only this?) information to find an admissible heuristic that is as good as
possible.
state [n] | h
(z,2)
(0,0)
(3:4)
(3v), y & {2,4}
0,9), y ¢ {0,2}

else

—< oW oo oy
<

o Solve the problem with A* search using your heuristic and draw the A* search tree. Label
each node with the corresponding state and the estimated cost of the cheapest solution path
through it. Additionally, mark in the tree the order of the expansion of the nodes.

O .o

0t5=5
£3 £
® o ® Ow
4yl <G 1t b=y
4
% 2™
00 6 ©»HO 09 By 6,NE
24823 248=3 24%=8 245=3 24S=3 243 =8
et P&) p3
el
(0,0 3%) (0,4) (>9) &) o0 Xy (3.9) (0
3458 Pd=p >ty =3 »3=f 3t(=& 31<=¥ 3=t =3
ey ot
f&

@ 60 09 oy oo
4G =3 O0t3=3 Utysy Gf) oS (4S=S
z]
[P P
0o 6o Guy @

5¢X=lo St»=§ 5t)=b SxI=}

4
)) P

(v Lo 3&
btu=te bt[=3 btT=1) [bto=b

X30NI

310N

TOPIC

DATE

OUV\ZJ\{OYTYKQOL &im‘d\<< = Main question: which fringe nodes to explore?

The standard protocol for finding a plan to get from the start state to a goal state is to maintain an outer
fringe of partial plans derived from the search tree. We continually expand our fringe by removing a node

(which is selected using our given strategy) corresponding to a partial plan from the fringe, and replacing
it on the fringe with all its children. Removing and replacing an element on the fringe with its children
corresponds to discarding a single length n plan and bringing all length (n+ 1) plans that stem from it into
consideration. We continue this until eventually removing a goal state off the fringe, at which point we
conclude the partial plan corresponding to the removed goal state is in fact a path to get from the start state
to the goal state. Practically, most implementations of such algorithms will encode information about the
parent node, distance to node, and the state inside the node object. This procedure we have just outlined is
known as tree search, and the pseudocode for it is presented below:

function TREE-SEARCH(problem, fringe) return a solution, or failure
fringe ¢ INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do

if fringe is empty then return failure
node + REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node

for child-node in EXP;\.\'DlST.-\TE|uw[4l. problem) do
fringe INSERT(child-node, fringe)
end
end

When we have no knowledge of the location of goal states in our search tree, we are forced to select our
strategy for tree search from one of the techniques that falls under the umbrella of uninformed search.
We’ll now cover three such strategies in succession: depth-first search, breadth-first search, and uniform
cost search. Along with each strategy, some rudimentary properties of the strategy are presented as well, in
terms of the following:

The completeness of each search strategy - if there exists a solution to the search problem, is the
strategy guaranteed to find it given infinite computational resources?

.

The optimality of each search strategy - is the strategy guaranteed to find the lowest cost path to a
goal state?

The branching factor b - The increase in the number of nodes on the fringe each time a fringe node
is dequeued and replaced with its children is O(b). At depth k in the search tree, there exists O(b*)
nodes.

The maximum depth m.

The depth of the shallowest solution s.

Searching with a Search Tree

Arsd

a

D Cagnd Cradend @D

= Search:
= Expand out potential plans (tree nodes)
= Maintain a fringe of partial plans under consideration
= Try to expand as few tree nodes as possible

frige [2 = o ooz structre wseol 1 Store
oL the Fmsrlale S+0es (nodes) theds Yo cown Qo
rﬁbm,-H\o. Current; SHORS .

* A search aygnthm is o alforithn. thos
5‘39« i buads @ seowch. trez (Mpe;fuwg
oty ffaction a‘f ertire Seavchhtree) . 14, has
to choose. an ordexiag 6 whot 1 Currensy
expand (enddy 40 be expardeol i catted e
«ﬁc-\fe, bu it has 0 Chook which one o exparel
fiest)

An optmal seoxch alGovithn.1s 4he one
thot inols leost-Cost plomg.

X30NI

310N

TOPIC

DATE

<] [>

De.{vm— Firet Search

Description - Depth-first search (DFS) is a strategy for exploration that always selects the deepest
fringe node from the start node for expansion.

.

Fringe representation - Removing the deepest node and replacing it on the fringe with its children
necessarily means the children are now the new deepest nodes - their depth is one greater than the
depth of the previous deepest node. This implies that to implement DFS, we require a structure that
always gives the most recently added objects highest priority. A last-in, first-out (LIFO) stack does
exactly this, and is what is traditionally used to represent the fringe when implementing DFS.

1 node
b nodes

b2 nodes
- wehe rere

thege Mooleg ave on the f;mfc

. m tiers <
Mmoximam o(fzfr)n

b™ nodes

Completeness - Depth-first search is not complete. If there exist cycles in the state space graph, this|
inevitably means that the corresponding search tree will be infinite in depth. Hence, there exists the
possibility that DFS will faithfully yet tragically get "stuck" searching for the deepest node in an|
infinite-sized search tree, doomed to never find a solution.

Optimality - Depth-first search simply finds the "leftmost" solution in the search tree without regard
for path costs, and so is not optimal.
nor

Time Complexity - In the worst case, depth first search may end up exploring the entire search tree.
Hence, given a tree with maximum depth m, the runtime of DFS is O(b").

Space Complexity - In the worst case, DFS maintains b nodes at each of m depth levels on the fringe.
This is a simple consequence of the fact that once b children of some parent are enqueued, the nature
of DFS allows only one of the subtrees of any of these children to be explored at any given point in
time. Hence, the space complexity of BFS is O(bm) ﬁ;ﬂ%%!ﬁx?m’f ?&,%bmff BIIWNBIHRE

TV%.

L4 o Visited
Ay } emp inttiolly

* Vit O and pur its adjocens Modes wiith ave mot
visited Yot ito tha Sxock.
0

[Visited

.NO&Li 0t the op of the Stack

* Nigit mode 1, pop mecle L fiom the tack. and put aw
ot its acns ‘nodos which. ove ot vtsited inthe sock.,

Visited

Stack

Modg 2. 0t the top of the Stack.

* Vi Mode 2, Pop it ffom the Srack andl put o ef its
ad{acxu\;c nodes which. ave ot vsiteol (e %, 4) inthe Stock..

A)°

Visited

[«T=T T T] sae

2|4 Visited of1]2]4[3] visited

* The 9pac thot £he. fonpe £0ReS contouins only ialings on
patih 1o Toot. (-2, Olom)

sSe
s>p
s>d>b
s>d>c

VN

< [>
e

* Description - Breadth-first search is a strategy for exploration that always selects the shallowest fringe
node from the start node for expansion.

* Fringe representation - If we want to visit shallower nodes before deeper nodes, we must visit nodes
in their order of insertion. Hence, we desire a structure that outputs the oldest enqueued object to
represent our fringe. For this, BES uses a first-in, first-out (FIFO) queue, which does exactly this.

1 node
b nodes
s tiers
— b® nodes
Let depth of shallowest solution be s
b™ nodes

Completeness - If a solution exists, then the depth of the shallowest node s must be finite, so BFS
must eventually search this depth. Hence, it’s complete.

Optimality - BFS is generally not optimal because it simply does not take costs into consideration
when determining which node to replace on the fringe. The special case where BFS is guaranteed to
be optimal is if all edge costs are equivalent, because this reduces BFS to a special case of uniform
cost search, which is discussed below.

Time Complexity - We must search 14 b+ b? + ... +b* nodes in the worst case, since we go through
all nodes at every depth from 1 to s. Hence, the time complexity is O(b*).

Space Complexity - The fringe, in the worst case, contains all the nodes in the level corresponding to
the shallowest solution. Since the shallowest solution is located at depth s, there are O(b*) nodes at
this depth.

* The e thot the. ffege toBLS. contouns Yougiuy the lase e,
0 0(F)

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

)77—&© —
@ O} @
Search P S— P !
® © © ® © @
Tiers | [AN
@ a h r p q f
AN | [N
L p g f 9 ¢ ¢
| PN !
q c G a
]
a

Mumber o4 expansions : 4
* bt g et 04 pte - € O(0Y)

RS is o OOTY\PI&E’, sequcin algo(uﬂxm Which meong that
it cloesn't Stop (Mmﬂ%@on {0y A goal modle..
% B%ﬁﬁﬁiﬁ%‘f&’ﬁ At o&w.we Tofia O RRERR)
RED ol Bk b /r%@
HBAPRTER, Y’%W@W\ie@m%%%ﬁé. 1)
Bt % + o'~ b
Trcv\ge (Initiali2e rf?mxe_ as an empty queut)

Fringe /

Fringe H N

: I NG
-- remove A from the fringe
-- add successors of A to the fringe

Eringe @

c

D Eringe /

E

- remove 8 from the fringe

~ remove C from the fringe

~ add successors of B to the fringe

- add successors of C to the fringe

Which state gets removed next from the fringe?

What kind of a queue is this?

P
s>dde>h
T dS e

P e
s>ddedr>idc
e

X30NI

310N

X30NI

Threshold =7

1

qqqqq

Thegndd = 1 > cunent moke alwe 2
S$%: explore % chaldxen , L Ciwlodren one. by ore.

° Crildbren. [Set_uament Tioda = (]

Pxplne S ChldTen

Threshold =8

A (2)2 84 8% Goal Mok

The god path: 2256-8-15

310N

(0 5. < Thregholol
explove i Chilolven,

(% F == threcholal
explove its chilolsen,
(D 12 tweasholdl , prune
(e 1k 4meagholol , Prune
(D2 8 thweasholdl , prune

(i U < Threshwelel,
explore its talolren,
(D2 8> thveshold, prine
(ii)e3 == -thmesholol
explore itS chilolsen,

(iN21 1% > thweaghold , Prure
(ide2. ¥ > timensholdl, Prunel

2° Cnilckren. | Se4 uerrent Moo = B
(= Thedeld]

W

(@) 6 < tmehdd

exPlore its children
(@) 6 < thresholol

(@ == tmeshold
clozsn't, howe childven,

(b) 6 < thredndd
explore its children
(b)i 3 == thrednddl
(@ 1> threshdel . prung] explore its chilolren.
(b 8 ¥ tmeasholdd , Prune
(bl 14> +imeashold , prure
(@), 3 >-thresholdl , prune (bla ¢ > -thredndd . prume

P’U(’Y\EA VO«[MQ IQ/llu’, ?r l%:g

IDDES

Time

Depth iterative Deepening Depth First Search

o ofo
2 01352645

3 0135426451

Complexity

* Mumbex of expangions : (Depen.= ol.)

onm

oleptin -0 evation = 1
daptn -1 igotion : 1.+ b
depin -2 HEYRBIN: [+t b

olp,PH/L—o(Hevation s 1t bt ot + bd

bt (oY 4+ 3 g bt €

Complerty = OClo-ol)

o

Yo the. patin. flom A +o 8

ot

DATE

* Description - Uniform cost search (UCS), our last strategy, is a strategy for exploration that always
selects the lowest cost fringe node from the start node for expansion.

» Fringe representation - To represent the fringe for UCS, the choice is usually a heap-based priority
queue, where the weight for a given enqueued node v is the path cost from the start node to v, or the
backward cost of v. Intuitively, a priority queue constructed in this manner simply reshuffles itself to
maintain the desired ordering by path cost as we remove the current minimum cost path and replace
it with its children.

C*/e “tiers”

Completeness - Uniform cost search is[complete] If a goal state exists, it must have some finite length
shortest path; hence, UCS must eventually find this shortest length path.

Optimality - UCS is also f we assume all edge costs are nonnegative. By construction, since
we explore nodes in order of increasing path cost, we're guaranteed to find the lowest-cost path to a
goal state. The strategy employed in Uniform Cost Search is identical to that of Dijkstra’s algorithm,
and the chief difference is that UCS terminates upon finding a solution state instead of finding the
shortest path to all states. Note that having negative edge costs in our graph can make nodes on a
path have decreasing length, ruining our guarantee of optimality. (See Bellman-Ford algorithm for a
slower algorithm that handles this possibility)

Time Complexity - Let us define the optimal path cost as C* and the minimal cost between two nodes ~ €ach irolividuod
in the state space graph as €. Then, we must roughly explore all nodes at depths ranging from 1 to Step costs ug ¢
C* /&, leading to an runtime of O(bC /¢).

Space Complexity - Roughly, the fringe will contain all nodes at the level of the cheapest solution, so
the space complexity of UCS is estimated as O(h€ /¢).

fundamentally the same - differing only in expansion strategy, with their similarities being captured by the

As a parting note about uninformed search, it’s critical to note that the three strategies outlined above are
tree search pseudocode presented above. \/

The One Queue

Strategy: expand a
cheapest node first:

= All these search algorithms are the
same except for fringe strategies
= Conceptually, all fringes are priority
queues {i.e. collections of nodes with

Fringe is a priority queue
(priority: cumulative cost)

attached priorities)

= Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

= Can even code one implementation
that takes a variable queuing object

-
@ 3 @ @ 1 UCS. explores. Encreosiy Cost, ComouTs.
B T e
®4 ., ©5 17 (O 1 (@ 16 ® The bad:
| | 1 ==~J N | = Explores options in every “direction”
Cost 6 a @13 7 f = No information about goal location
contours @ N\ CP ;l) I N
p g @8 9 ¢
I =
g 1© @10 a
T

X30NI

310N

TOPIC DATE
e Path Cost @ Explored set:
A 0
Fringe Path Cost @ 75
A—0—
? o 141/ 113\A
T 118
;o (s) (2) Explored set: A
Fringe Path t @
S — 75
g ?40 141/ éﬂ&
T 118
o (s) (2) Explored set: A 32

146
146

Fringe Path Cost @
A= 140 §
s 140 118

118
Z 75 -

T 146
L 229 229 146
o 8@
T 146
L 229 220 146
F 239
T @ @
= é)
T 146

L 229 220 146
F 239
R NNGRC

S / é\
5 55 5 &

@@

Fringe Path Cost

A——0—

Fringe Path Cost
A—-"0—"
S——140-
118

Explored set: A, Z, T, S, R

Explored set: A, 2,

Explored set: A, 2, T

Explored set: ‘A, 2. 1.3

Fringe Path Cost :
— 75
5140 142/ 118
T 118
= O @
T 146
= 299" zsi/ \220 229 146
F 239
R———220
C 336
P 317
M 299 / \ 299
336 317 %

Explored set: A, Z, T, S, R, L

X30NI

310N

X30NI

TOPIC DATE

o Znformed &mdu<<

310N

Uniform cost search is good because it’s both complete and optimal, but it can be fairly slow because it
expands in every direction from the start state while searching for a goal. If we have some notion of the
direction in which we should focus our search, we can significantly improve performance and "hone in" on
a goal much more quickly. This is exactly the focus of informed search.

Heuristics are the driving force that allow estimation of distance to goal states - they’re functions that take
in a state as input and output a corresponding estimate. The computation performed by such a function is Example: Heuristic Function
specific to the search problem being solved. For reasons that we’ll see in A* search, below, we usually want
heuristic functions to be a lower bound on this remaining distance to the goal, and so heuristics are typically
solutions to relaxed problems (where some of the constraints of the original problem have been removed).
Turning to our Pacman example, let’s consider the pathing problem described earlier. A common heuristic
that’s used to solve this problem is the Manhattan distance, which for two points (x1,y;) and (x2,y2) is
defined as follows:

Manhattan(xy,yy,x2,y2) = |x; —x2| + [y1 — 2|

h(x)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place
hov Wy v

The above visualization shows the relaxed problem that the Manhattan distance helps solve - assuming
Pacman desires to get to the bottom left corner of the maze, it computes the distance from Pacman’s current
location to Pacman’s desired location assuming a lack of walls in the maze. This distance is the exact goal
distance in the relaxed search problem, and correspondingly is the estimated goal distance in the actual
search problem. With heuristics, it becomes very easy to implement logic in our agent that enables them
to "prefer" expanding states that are estimated to be closer to goal states when deciding which action to
perform. This concept of preference is very powerful, and is utilized by the following two search algorithms
that implement heuristic functions: greedy search and A*.

<] >

L ety s,

* Description - Greedy search is a strategy for exploration that always selects the fringe node with the
lowest heuristic value for expansion, which corresponds to the state it believes is nearest to a goal.

{.e. expond o node tnat " hewr e
Qags 'S the closect © Q Soak stare

» Fringe representation - Greedy search operates identically to UCS, with a priority queue fringe rep-
resentation. The difference is that instead of using computed backward cost (the sum of edge weights
in the path to the state) to assign priority, greedy search uses estimated forward cost in the form of
heuristic values.

* Completeness and Optimality - Greedy search is not guaranteed to find a goal state if one exists, nor is
it optimal, particularly in cases where a very bad heuristic function is selected. It generally acts fairly
unpredictably from scenario to scenario, and can range from going straight to a goal state to acting
like a badly-guided DFS and exploring all the wrong areas.

(a) Greedy search on a good day :) (b) Greedy search on a bad day :(
b:= the \oraY\dr\Inj {bum’ C W inglicotrs how TY\D\Y\:_/J SUCLEROTY Qe thard ﬁom m:j given moolo

The offectue. branching besr (ARBREA) s dofmadl as = A= B + (05 + (6% + w2 (61 semehel)
N := the number 61 nootes (t.e. the sie of fiinfe + the 92e of explored.) NF 6 « N (1 o Vil of nocles
b" := ot{etsive orancwng fBesr (to finol) . T finds the "auerofe” bromohind derr ot O Aree. (Smadex bronchay = less Seroning)
ol:= cloptih of Solution. i.e. Sexch tlopen

TOPIC DATE

* Description - A* search is a strategy for exploration that always selects the fringe node with the lowest
estimated total cost for expansion, where total cost is the entire cost from the start node to the goal
node.

Fringe representation - Just like greedy search and UCS, A* search also uses a priority queue to
represent its fringe. Again, the only difference is the method of priority selection. A* combines the
total backward cost (sum of edge weights in the path to the state) used by UCS with the estimated
forward cost (heuristic value) used by greedy search by adding these two values, effectively yielding
an estimated total cost from start to goal. Given that we want to minimize the total cost from start to
goal, this is an excellent choice.

Completeness and Optimality - A* search is both complete and optimal, given an appropriate heuristic
(which we’ll cover in a minute). It’s a combination of the good from all the other search strategies
we’ve covered so far, incorporating the generally high speed of greedy search with the optimality and
completeness of UCS!

* g(n) - The function representing total backwards cost computed by UCS.

* Two lsts are usel -

* h(n) - The heuristic value function, or estimated forward cost, used by greedy search.
« An open list, implemented as a priority queue, which stores the next nodes to be explored.

* f(n) - The function representing estimated total cost, used by A* search. f(n) = g(n) +h(n). Because this is a priority queue, the most promising candidate node (the one with the lowest
value from the evaluation function) is always at the top. Initially, the only node in this list is the

8
start node S.
h=1 « A closed list which stores the nodes that have already been evaluated. When a node is in the
1 closed list, it means that the lowest-cost path to that node has been found.
3 2
d G) 9h
s h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

* When ghoulol A* rermincete?

Q.g. S 1013)
2 2

Example: Teg Grenager

@M h:a@ AQ42) Bl2t2)

& mio) é(aw)

Shoulol. we stop whan-we enqueve a goat? AJO. ONLY Stop whan we degueue a goal.
* Corcvete Zmp\amantation : findl tihe. shortest path flom S0 6 inthe foliowing groph:

Node[cost] Closed List
s .
B[16]
. cpe]
9 N
{ &p) (B) (¢c)
\@,/A @/ &/
S A4 orTeAt Thast promesiy .
Soit's Q’Kp\owﬁ o8 '
—
¥
Woseicosy | [Ciosea it
ona s
o) =

o/ \a/\&/\a/
Themew nede. i the Ust ¢ B

o]
N = — g«tr\x However, teoouse 8 has
N wn]) | ben exploreal, menming o Sortest pai
NN o o J"m B s heen founel . 1Cis not explovesl again
) (&) e " Q£ OQIAEM CoMLinues o the. Nett Gaidicloe
o H

The mt'mdl.'tvbe-@-nd.\swm'rm
‘6.wm::immgmwa beon
o/ b fund fmummmibjmwjm
1| gropn backwrd fiom 6 o <.

;

Closed List

Nodefcost]
B0
N cie)
) °
()

=

=)

The algoﬂehm oontmues eCouse.
thare 7m0y be Q. snorter Patinto 6

o

S The node B hos TWO entries i
L) (5 vheopen Gst: ONQ O£ Q. cmt of IE
*._ and o at o cost of 18 P
s The ong. with tha. lowest cost i§ P
exploved, Mext,.

X30NI

310N

3 DATE
TOPIC g=ro ¥ g== th dcoumubbtice Cost So {ar.

/ Corsidler tha Spetiol cose in whxdn hewritic -(‘uv\cx\m\ hemy = 1= o

> .F(m ScM-r hwny = gcm + | - %cm 1

2 Suoh o heuntstic. veduces A* Search 4 BFS (fim MPRER- BABRATA-$R)
BFS is mot gbwlYaNUeeol to e optimal in the gereval case where WG

ove mot constons. (BFS it Beod 28R MM e . THABENR LR HEERA)

= What went wrong? = .A* {n its QIRCIDL se (S mnot OPHTY\M

= Actual bad goal cost < estimated good goal cost
= We need estimates to be less than actual costs!

. Aolwusmhle,/ﬂgﬁ% and. Consist:

1) The condition required for optimality when using A* tree search is known as admissibility. The admissi-
bility constraint states that the value estimated by an admissible heuristic is neither negative nor an overes-
timate. Defining /*(n) as the true optimal forward cost to reach a goal state from a given node n, we can
formulate the admissibility constraint mathematically as follows:

Vn, 0 <h(n) <|h"(n)

Mo we con't ocress thid value. Hut in Poc-Man
In Pac- Man u%\‘og “ Manhatten Oistomes.” T with wall : Mot true Ccost.
withowt wouk. = e = h¥n)

(2) Tm(bm\aL & Formal Pioof the oprimorty of A” with. oolmissibilx
J\%Sumﬂ_ A is o optimal goal. nocle N\ BiSa Subooptimak goaL noele A\ W ig polmigsible
A will exit tha {tife hedore B.
lma{\w_ Bis ontht fige A Some amneestr 1 of A g on the fiiye 100 tmaybe A!)
S Cloam: n. wik e expandbefore B. < i3 B2 A R >
() o is lesg or equol 4o f

e e e e fome gemswin) < Defntion of frimto
Theve cowtol be. MANT Coal states, onal coutd. be Y odavissoble =
w© eamm-tn oa}.g«:&s mépmmlm is mrms {(m S %(A\ < Mmﬁ‘lo\b\u{_‘,‘j M(' hod M“vgow%mmsm»mm
shortest €rom the Stave <o ANT Stote ; (A) = ¢ h=o ot & Qool > itw\uamtog%mtmo(xm
YSuboptivol’ TGS (€S A PA BOALSTATE , however ¥ fu b gook-
not 0S TNO¥E OS ha powv\a\cndaottr\\/\ * (it) {(N {s legs thon ff'[B)
ANKEESEY) AR BRI BB AR < M oRaBE BA < @ ¢ Bis Subopumal >
ftar < fin) <hzo ot o ool >
*&’lﬁxﬁ(‘-)?ﬁ% FALR?

When 8 (s ontha i 1(:\%% A gt e ot o (i) M exPands loe{we B
e A*‘t a . w@%tm Mv BB <
BAMR 70, RABERITE w%gﬁﬁz@;@ AU onegstorg 61— A (J,w[)am('be,{mre B = A expands befoe B 2 A’ gemch optimaL..
R ess ostmctive), When A is mot on the
We Rnow an oncstoY 9£.A has4v be on the ff« Theorem. For a given search problem, if the admissibility constraint is satisfied by a heuristic function #,

Arol then e 1504 wavondeed. ‘("W’H“""' using A* tree search with / on that search problem will yield an optimal solution.
(IS thLbQ Q*&Pandnd efore b QU thak we

Com fer A on 4w 'fm«{c betwe b gets expancles| . Proof. Assume two reachable goal states are located in the search tree for a given search problem, an optimal
goal A and a suboptimal goal B. Some ancestor n of A (including perhaps A itself) must currently be on the
(WQ/‘F@%&"“‘\W{‘!) fringe, since A is reachable from the start state. We claim n will be selected for expansion before B, using

the following three statements:

1. g(A) < g(B). Because A is given to be optimal and B is given to be suboptimal, we can conclude that
A has a lower backwards cost to the start state than B.

2. h(A) = h(B) = 0, because we are given that our heuristic satisfies the admissibility constraint. Since
both A and B are both goal states, the true optimal cost to a goal state from A or B is simply 7*(n) = 0;
hence 0 < h(n) <0.

3. f(n) < f(A), because, through admissibility of h, f(n) = g(n) +h(n) < g(n)+h*(n) = g(A) = f(A).
The total cost through node 7 is at most the true backward cost of A, which is also the total cost of A.

We can combine statements 1. and 2. to conclude that f(A) < f(B) as follows:
f(A) = g(A) +h(A) = g(A) < g(B) = g(B) +h(B) = f(B)
A simple consequence of combining the above derived inequality with statement 3. is the following:

f(n) S fFA)Af(A) < f(B) = f(n) < f(B)

Hence, we can conclude that n is expanded before B. Because we have proven this for arbitrary n, we can
conclude that all ancestors of A (including A itself) expand before B. O

X30NI

310N

TOPIC

DATE

(3) 4k > BIER

(©)

One problem we found above with tree search was that in some cases it could fail to ever find a solution,
getting stuck searching the same cycle in the state space graph infinitely. Even in situations where our
search technique doesn’t involve such an infinite loop, it’s often the case that we revisit the same node

ARERQDPARNNRELR - REA
ﬁ"i%)ﬁ%ﬂ@ s %&)

multiple times because there’s multiple ways to get to that same node. This leads to exponentially more

work, and the natural solution is to simply keep track of which states you’ve already expanded, and never

In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

expand them again. More explicitly, maintain a "closed" set of expanded nodes while utilizing your search

method of choice. Then, ensure that each node isn’t already in the set before expansion and add it to the
set after expansion if it’s not. Tree search with this added optimization is known as graph search, and the

pseudocode for it is presented below:

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed + an empty set
fringe INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do
if fringe is empty then return failure
node +~ REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE[node], problem) do
fringe « INSERT(child-node, fringe)
end

end

Note that in implementation, it’s critically important to store the closed set as a disjoint set and not a list.
Storing it as a list requires costs O(n) operations to check for membership, which eliminates the performance
improvement graph search is intended to provide. An additional caveat of graph search is that it tends to
ruin the optimality of A*, even under admissible heuristics.

Consistency /- i
t

Consider the following simple state space graph
and corresponding search tree, annotated with weights and heuristic values:

A > W) , ¢ SE M HR SR 6BIT BT, 3R
oo 4 afm’fméﬂmw(. W%, m&%{%ﬁ%ﬁ.
S(0+2

O\

A (1+4) B (1+1)

C(2+1) C(3+1)

G (5+0) G (6+0)

h=0

In the above example, it’s clear that the optimal route is to follow § —+ A — C — G, yielding a total path cost
of 14143 =5. The only other path to the goal, S — B — C — G has a path cost of 1 +2+3 = 6. However,
because the heuristic value of node A is so much larger than the heuristic value of node B, node C is first
expanded along the second, suboptimal path as a child of node B. It’s then placed into the "closed" set, and
so A* graph search fails to reexpand it when it visits it as a child of A, so it never finds the optimal solution.
Hence, to maintain completeness and optimality under A* graph search, we need an even stronger property
than admissibility, consistency. The central idea of consistency is that we enforce not only that a heuristic
underestimates the fotal distance to a goal from any given node, but also the cost/weight of each edge in the
graph. The cost of an edge as measured by the heuristic function is simply the difference in heuristic values
for two connected nodes. Mathematically, the consistency constraint can be expressed as follows:

VA,C h(A)—h(C) < cost(A,C)

RS RIERAIRHRRE » %1 $RAR D)
7. B TR PR TR IR 30, 29
Bl PRPHR DR,

YR 1RAS ANHTA DR 2 B0
J¥6%; B4Rt APBRL M AE
Vol AL § RRAR iR

Theorem. For a given search problem, if the consistency constraint is satisfied by a heuristic function £,

using A* graph search with / on that search problem will yield an optimal solution.

Proof. In order to prove the above theorem, we first prove that when running A* graph search with a

BATRI B R o R ShERNA

consistent heuristic, whenever we remove a node for expansion, we’ve found the optimal path to that node.

Using the consistency constraint, we can show that the values of f(n) for nodes along any plan are nonde-

creasing. Define two nodes, n and n’, where ' is a successor of n. Then:

f') (') +h(n')
= g(n)+cost(n,n')+h(n')
8(n) +h(n)

(n)

~

If for every parent-child pair (n,n’) along a path, f(n') > f(n), then it must be the case that the values of
f(n) are nondecreasing along that path. We can check that the above graph violates this rule between f(A)

and f(C). With this information, we can now show that whenever a node n is removed for expansion, its
optimal path has been found. Assume towards a contradiction that this is false - that when n is removed
from the fringe, the path found to n is suboptimal. This means that there must be some ancestor of n, n”, on
the fringe that was never expanded but is on the optimal path to n. Contradiction! We’ve already shown that

values of f along a path are nondecreasing, and so n” would have been removed for expansion before n.

All we have left to show to complete our proof is that an optimal goal A will always be removed for expansion

and returned before any suboptimal goal B. This is trivial, since #(A) = h(B) =0, so

f(A) =g(A) <g(B) = f(B)

just as in our proof of optimality of A* tree search under the admissibility constraint. Hence, we can

conclude that A* graph search is optimal under a consistent heuristic. O

X30NI

310N

TOPIC

DATE

A couple of important highlights from the discussion above before we proceed: for heuristics that are either
admissible/consistent to be valid, it must by definition be the case that #(G) = 0 for any goal state G. Ad-
ditionally, consistency is not just a stronger constraint than admissibility, consistency implies admissibility.
This stems simply from the fact that if no edge costs are overestimates (as guaranteed by consistency), the
total estimated cost from any node to a goal will also fail to be an overestimate.

Consider the following three-node network for an example of an admissible but inconsistent heuristic:

= Sketch: consider what A* does with a
consistent heuristic:

increasing total f value (f-contours)
s optimally are expanded before nodes

that reach s suboptimally

= Result: A* graph search is optimal

The red dotted line corresponds to the total estimated goal distance. If h(A) = 4, then the heuristic is
admissible, as the distance from A to the goal is 4 > h(A), and same for #(C) = 1 < 3. However, the
heuristic cost from A to C is h(A) — h(C) = 4 — 1 = 3. Our heuristic estimates the cost of the edge between
A and C to be 3 while the true value is cost(A,C) = 1, a smaller value. Since h(A) — h(C) £ cost(A,C),
this heuristic is not consistent. Running the same computation for #(A) = 2, however, yields A(A) — h(C) =

= Fact 1: In tree search, A* expands nodes in

= Fact 2: For every state s, nodes that reach

0 0 B AR
S AAHT B8) DAL Gt
KFOAA R &b,

2—1=1<cost(A,C). Thus, using 7(A) = 2 makes our heuristic consistent.

(> Dominance <<

Now that we’ve established the properties of admissibility and consistency and their roles in maintaining
the optimality of A* search, we can return to our original problem of creating "good" heuristics, and how to

tell if one heuristic is better than another. The standard metric for this is that of dominance. If heuristic g is

dominant over heuristic b, then the estimated goal distance for a is greater than the estimated goal distance
for b for every node in the state space graph. Mathematically,

Vn : hy(n) > hy(n)

Dominance very intuitively captures the idea of one heuristic being better than another - if one admissi-
ble/consistent heuristic is dominant over another, it must be better because it will always more closely esti-
mate the distance to a goal from any given state. Additionally, the trivial heuristic is defined as h(n) = 0,
and using it reduces A* search to UCS. All admissible heuristics dominate the trivial heuristic. The trivial
heuristic is often incorporated at the base of a semi-lattice for a search problem, a dominance hierarchy of
which it is located at the bottom. Below is an example of a semi-lattice that incorporates various heuristics
hg, hp, and h. ranging from the trivial heuristic at the bottom to the exact goal distance at the top:

exact
I
mazx(ha, hy)

/\
ha hb
|
he
N,
ZETo

As a general rule, the max function applied to multiple admissible heuristics will also always be admissible.
This is simply a consequence of all values output by the heuristics for any given state being constrained by
the admissibility condition, 0 < h(n) < h*(n). The maximum of numbers in this range must also fall in the
same range. The same can be shown easily for multiple consistent heuristics as well. It’s common practice
to generate multiple admissible/consistent heuristics for any given search problem and compute the max
over the values output by them to generate a heuristic that dominates (and hence is better than) all of them
individually.

En4 e - TBERR B BT 4% 2
. Mm&mﬁﬁl;%ﬁ?ﬁamwummmm
= UPARZIDRMETER.,

awca’raﬁ-‘ﬁ%ﬁ*k} byt B TS

YARAVBRS TS A* THBARMBANERS, (Le. BAHHENAS s HEMBHEIHE 2| BAOKE RIS), SN ERREEIE B BABANGRL . 5 Tenrch Problem

TBDIE. FMEET BAR GRS R BAGHERL 4 TR BN mon BATORRA Xorvh e AG 11

X30NI

310N

TOPIC DATE

[-rpe® C

iy l
g b
Herist: A Rle conmove ffom quare At squre B, @ A 1S adjocenn o B.

* Given & particdar stowe
Constoler every non- empiy tle: cotculate the Manhotran Distons. between tha current position. of the tile
and. the goal fosition ef the tile.
Adol this Vatue £or alL tne. Mon- empty -tiles together

° Initial State Goal State
aE Ll e G 3414242401282 =0
8| 7|6 4 5|6 -{—L[‘é/i
21411 78

)

[gogve)
Y fyierty A tle conamove fiom gquare A Squre B
- Given 0. partiouar Stodt , Counk the number of non- empiyf Hilesthot 2¥e not 1. thair goal positions.
Le., f atile s ot in its goal postion. We can o & o S ool poston i one. Sbep.
A3\ %80 " Misplacecl Tele Heurstic Vatue" % 7.

>

sk

* Jnytile can ve mmovedd o the llank. Squove ditecty COUMt the. Tumber of SWOPS.

Q.S.

Goal Stobe Initiod Seate | Znitioh State

112132 AR blot$ by | > 11212 12>

g 4 e G 18| 21§ $(~>1% S| >3 4

1bls vlils el 3 (e]3] [WBR 3 b|5
h=0 h= 3 n=1% h=U h=0

* Sugst A way 1 caloulote GoE'S hewrstic. edficiently

Znitiod Scate Goal Statt, 6oaL:<oI1%Q5b¥8>
»b6b2 % 531 4 0
U

b[2]8 1 12
0|3 | gloly S (0%3)(1b6)(2) (453) "Cﬂde Decomposition.”
Ul |+ by

We calculate Gaschnig’s heuristic by cyclic decomposition:

1. Select a square A which has not been reached yet.

2. Find the square A’ where the tile (or blank) in square A should locate, then again find the
location of tile in A’. Repeat until we reach the square A again.

3. Record the number of tile (if it is blank then we record B) reached in step 2 and build a circle
7. Then back to step 1 until all squares are reached.

Sppose. ot Ti . T oe. AL cycles Genoiatedl.
Jet S(Y) = yumners of Gosthmg's moves needed v oycla T,
7] 2= lengtn of cycle 7.
Then: S(M =50 if |¥|=1
ITl-t i [V[>1 anol Blank €7
Irl+l o [71>1 anol Blomk & 1 (%@@?%ﬁﬁ@bfﬁf&lmk&x@@mm%@%

X30NI

310N

roric ConStvaints §aﬁsfaction Problems (CSPs) /kBRRER

o TrdrO

¢

o 2 Seourch Problems & (SPs

In the previous note, we learned how to find optimal solutions to search problems, a type of planning
problem. Now, we’ll learn about solving a related class of problems, constraint satisfaction problems
(CSPs). Unlike search problems, CSPs are a type of identification problem, problems in which we must
simply identify whether a state is a goal state or not, with no regard to how we arrive at that goal. CSPs are
defined by three factors:

. Variables - CSPs possess a set of N variables X, ..., Xy that can each take on a single value from some

defined set of values. Vaxiobles usuauy Tepresens Some. quartiies of QbSNOCHDNS thax WE TTY to TeasoN kot

Q Set of values

variables.

. Domain - A set {x1,...,x,} representing all possible values that a CSP variable can take on.

. Constraints - Constraints define restrictions on the values of variables, potentially with regard to other

P[a'rmfn& FRRY

Heurstics give problem - Specific

il

Zolontificotion A5%b)

The path (i.e. %@MM] to the Lot

Paths

“The ¢oad. i
U

Paths hove ~ayious 0OstS. Olopti.
Sianolordl Sbowcin. Problems

Assmons Ooout the. world :
e g?gg e QF‘M (Youw)

CSP := o specintised clacs of idoraficntion Problems
i= (u gpeciol Sulbset of SearCin Problems

All podins 0 £ho Soamo oleptin (o Somo Ghrmulozing)

*A —ij okseryople SOLES
State Wself is o Black. box, the only thisgs thax
gow com olo to O stoke Qe . get Successor ¢);
& ", is@oal()"

Le. Partal ossignmons

o domoin D (Sometimes Dda.pends on i) <wecon
'Peg&t(\gtdo the Stode. >

is oletineck oy vaiobles Ki wibn voduas from.

* A\ determiniskic octions
Sucaessor fumenon con ve anyenng
ool Test be

Suceessor fumedon s " Assign o mew uaviodle”

of values for Suptets ef voriohles,

Goal Test ¢ {conserarnts | spesyfing auttowore. combinodions

‘AN dxscw;eegvmbestpom

Allows for useful general - purpose Njon"thmg with more

Power than Stamolarol_search. olforithms.

* [Varietes of (SPs
= Discrete Variables
* Finite domains
= Size d means O(d") complete assignments
= E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)
= Infinite domains (integers, strings, etc.)
= E.g., job scheduling, variables are start/end times for each job
* Linear constraints solvable, nonlinear undecidable

= Continuous variables
= E.g, start/end times for Hubble Telescope observations

= Linear constraints solvable in polynomial time by LP methods
(see cs170 for a bit of this theory)

UNR (AHTLERMNBTERARE25)

« Unary Constraints - Unary constraints involve a single vatiable in the CSP. They are not represented
 Binary Constraints - Binary constraints involve two variables. They’re represented in constraint

* Higher-order Constraints - Constraints involving three or more variables can also be represented with

= Preferences (soft constraints): fRFIR. (MLARE preforae)

Voxietres o(’ Consivtins

in constraint graphs, instead simply being used to prune the domain of the variable they constrain
when necessary.

graphs as traditional graph edges.

edges in a CSP graph, they just look slightly unconventional.

= E.g., red is better than green

= Often representable by a cost for each variable assignment
= Gives constrained optimization problems

= (We'll ignore these until we get to Bayes’ nets)

°C3P Exampl@(

Example: Sudoku

Example: Cryptarithmetic
= Variables: o Reok- Word. CSPs
7 | A = Each (open) square = Variables: Two - T on | + Scheduling problems: e.g, when can we all meet?
7T / . FTUWRO X1 Xp X3 fTWO < | 3HE = Timetabling problems: e.g., which class is offered when and where?
8 / = Domains: - Domains: FOUR Mﬂ = Assignment problems: e.g., who teaches what class
: * Hardware configuration
8l4 116 A " 12,9 {0,1,2,3,4,5,6.7,8,9} = Transportation scheduling
S 1 = Constraints: = Constraints: = Factory scheduling
i SR T T W = Circuit layout
1 318 9 \ 9-way alldiff for each column alldiff(£, 1, U, W, R, O) + Fault dingnosis
5 8 . > 9-way alldiff for each row O+0O=R+10 X3 lots more!
2 915 1Y)
9-way alldiff for each region
i 2
718 206/ (or. can h:.ive a bl,.mch of
pairwise inequality
2 3 constraints)

X30NI

310N

TOPIC DATE

Mop GJLOT‘U\} {@uer\,: a set of colors

* (SPe ave sften epresored as Consriaint Graph /41%HE { Nooles := varioxles

The constraints in this problem are simply that no two adjacent states can be the same color. As a result, by
drawing an edge between every pair of states that are adjacent to one another, we can generate the constraint
graph for the map coloring of Australia as follows:

colors

constraints, e.g.:

MRBESPIEE. b
o Y. FRIAINES (Bpeote) Bt oRAE.
° ii@\lsm (AADERE) : Tree search
PRUSH « 3 xadn @
© RARRET
The \;ﬂvll’le of constraint graphs is that we can use them to extract valuable information about the structure of
the CSPs we are solving. By analyzing the graph of a CSP, we can determine things about it like whether

it’s sparsely or densely connected/constrained and whether or not it’s tree-structured. We’ll cover this more
in depth as we discuss solving constraint satisfaction problems in more detail.

Provlem: Coloy o map ot o tuo adjocw; States (or Tefcons) have th come color.

edge,s 1= constraint betwee 7odos,

= Variables: WA, NT, Q, NSW, V, SA, T
Domains: D = {red, green, blue}
Constraints: adjacent regions must have different
Implicit: WA 7#= NT
Explicit: (WA, NT) € {(red, green), (red, blue), ...}
= Solutions are assignments satisfying all

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=blue, T=green}

o

Soluutg C3Ps <<

* Stanclard. Search Formulasion. of CsPs

= States defined by the values assigned
so far (partial assignments)
= |nitial state: the empty assignment, {}

= Successor function: assign a value to an
unassigned variable

Goal test: the current assignment is
complete and satisfies all constraints

* Method 4 (naive) — D#RBER

Constraint satisfaction problems are traditionally solved using a search algorithm known as backtracking
search. Backtracking search is an optimization on depth first search used specifically for the problem of
constraint satisfaction, with improvements coming from two main principles:

1. Fix an ordering for variables, and select values for variables in this order. Because assignments are
commutative (e.g. assigning WA = Red, NT = Green is identical to NT = Green, WA = Red), this
is valid.

2. When selecting values for a variable, only select values that don’t conflict with any previously as-
signed values. If no such values exist, backtrack and return to the previous variable, changing its
value.

The pseudocode for how recursive backtracking works is presented below:

function BACKTRACKING-SEARCH(csp) returns solution/failure
return RECURSIVE-BACKTRACKING({ }, csp)
function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var «— SELECT-UNASSIGNED- VARIABLE(VARIABLES[¢sp], assignment, csp) MIAIGIRRAE y@% %%
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do {o&_' ﬁq&%-l\“ ‘\\f)ﬁ‘
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = value} to assignment
result — RECURSIVE-BACKTRACKING(assignment, csp) RREREDT- TER WA
if result # failure then return result %m‘ﬁ’lﬁﬁm“%m.ﬂ‘\ 0)))
remove {var = value} from assignment @V{%‘ﬁ%ﬁ’ﬁm\,ﬁm, R 3 B @mﬂl'ﬁ_

return failure

—> W (RA MR ?)
—> futniBE AR vale 2

Bocxtracki R-APHRARDFS : OFS BAVARRFTAGAL:

Pavtinl genvch. treg fv DFS 1>a7&‘al. Seoach tree. 4or Bocktrockﬂ)p
A A
R i
= o o o
e T
" @< &
VAN P
o o o

FeARTREMN, F5 BRI oAt , B Ioas3 2 R
BRRFERT.; Bammﬁ%m'mm@szmﬁ

WFEREEBBAR. [$RRRI RS MRS, » Brbihsp
AR, WEIHF - TEHK. 46 LB HRERD A TRE)

1 RRTARSR TRABPR TS

\
warol cwmg‘
ﬂ{;}mvw}é—*k

X30NI

310N

TOPIC DATE

* Method2 — Fitertnf = Can we detect theuitable fBalure eary?
Keep track of domaing for unassigneal. Vortables ool Cross eff bool epsions.
Naive method. o FiLte)fug — Torwarol Cheorsg / MRSHE
Gross ot vatues thot vidlade o constroant when odelasl o the existey ossiprenant.
() Zdea: BFAISARNIEEWBOFARBRAE®, 2Fd 4 R ORI TR (R-#3NEERY2) . Forward Cheching /5,263 % RIB AKX
MRARER 457 R, Whenever O vaue &5 ossignenl 1o & varioble Xz, Forword Checking prumes the. dlomouns of the. uossijned.
vayioles thot ehoore O constraint, wath %o thot woulol utolate the constroint ¢f Ogsigneot.

(2) e.g-
WA NT Q NSW A SA
vl EEEECEECEEO B[N D N]E DN
ey]| TEErEEeEEeE] om] assg WA=Ted S thegie of the domains for AT ondl A olervenses
3 [(EEm] ®moo (s mEoE] N

QSN Q = reen. => he 82w of <he. olomains for AT, SA ool HSW olecrenses
ABR Torwnrol Checrug RhtRF ABMBATE MABR Forwouol Chackif 18, NTAC3A PATEKERPRITGEAD ~RARap.
= We neecl 10 1easM from Constraint 1o corstaist (constiaint Propogodion)

Axc Consisteney [BTARS.
(0 Zolea: 4 csPHRDYEER unctiected eolfe CRFD) R two clivecteol eolpes poveing . opposite. clirections (FAIERARIARL)
B - R MEABLIAE ave ()

@ A Conswngj HAlorithm:

* Begin by storing all arcs in the constraint graph for the CSP in a queue Q. A simple form of propagation makes sure all arcs are simultaneously consistent:

An arc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

* Iteratively remove arcs from Q and enforce the condition that in each removed arc X; — X, for every
remaining value v for the tail variable X;, there is at least one remaining value w for the head variable
X such that X; = v,X; = w does not violate any constraints. If some value v for X; would not work
with any of the remaining values for X;, we remove v from the set of possible values for X;.

* If at least one value is removed for X; when enforcing arc consistency for an arc X; — X, add arcs
of the form X — X; to Q, for all unassigned variables X. If an arc X, — X; is already in Q during
this step, it doesn’t need to be added again.

» Continue until Q is empty, or the domain of some variable is empty and triggers a backtrack. BAY) Qb Eﬂ’r“ﬁmﬁ ﬁmmlﬂﬁ B9,

° LARQR:
HIREF 0 ATRAA Y. BRAKER Y b L)AA T TME W, R 1, 4= w
PINRABRBEALERAR 5
ATX T 0 fmr’n the taill PRAT WRHELAV, AR BB R BERAR. . T WRAMN: S TRERATHE.
% = 1 twis s e case , BphTIAS A FRERALRIRREER X , b9 X, Xc PABIG:

NP Q. WRENSIF AT Xic > e, R REHR 0.

function AC-3(csp) returns the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables { X, X5, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp Revou- Iacongseans-vales T3 RR SHERRYIR?
5 o " RADQPRFARAER, BARR- R, FAMOPA R -Frei.
while gueue is not empty ‘?0 tail head R ARIeRAH, RNHNLS ARAPRO:
(Xi, Xj) < REMOVE-FIRST(queue) »° ,—>e€ DR SR PR ABIRMRR , RINIS R0
if REMOVE-INCONSISTENT- VALUES(X;. X;) then eol. BO. (e WA OERS S to0cs) Busk
for each Xj. in NEIGHBORS[X;] do j BT, FPRETarc oo BB oLk
S SRR erecliR

add (X}, X;) to queue

function REMOVE-INCONSISTENT-VALUES(.X;, X;) returns true iff succeeds

removed «— false &b@ﬁﬂ%‘[‘%ﬁﬂﬁm

for. each 7 in l.)OMAIN[‘\,-] (!0 . o) RRASOIP R AR EESH, Bk
if no value y in DOMAIN[.X] aIIost (2,y) to satisfy the constraint X; < X; | Looss irommt
then delete = from DOMAIN[X}]; removed — true I ‘
return removed HIBIURAD, THFDI 55 OIS PP o1
AR T4,

S

The AC-3 algorithm has a worst case time complexity of O(ed?), where e is the number of arcs (directed
edges) and d is the size of the largest domain. Overall, arc consistency is more holistic of a domain pruning
technique than forward checking and leads to fewer backtracks, but requires running significantly more
computation in order to enforce. Accordingly, it’s important to take into account this tradeoff when deciding
which filtering technique to implement for the CSP you’re attempting to solve.

X30NI

310N

X30NI

TOPIC DATE

310N

WA NT Q v A
1 Hjmowie EmrE| 1]
A

We begin by adding all arcs between unassigned variables sharing a col 0 a queue Q, which gives us

Q:[‘SA—)NSW,_.SA — NT,NT'='SA,V — NSW,NSW = V| toil naod.

For our first arc, SA — V, we see that for every value in the domain of SA, {blue}, there is at least one value SA=M. Ok BHR

in the domain of V, {red,green,blue}, that violates no constraints, and so no values need to be pruned from V-sA MRV Rblue , @p
SA’s domain. However, for our next arc V — SA, if we set V = blue we see that SA will have no remaining

values that violate no constraints, and so we prune blue from V’s domain.

NSW Vv SA

WA NT Q
[(w] WS e weS T W] s wedem

XQ. BPSA-SV, MsW-V.
BINSW>V eEQP . Fwi®

Because we pruned a value from the domain of V, we need to enqueue all arcs with V at the head - SA — V, BINSAS V
NSW — V. Since NSW — V is already in Q, we only need to add SA — V, leaving us with our updated
queue

Q = [SA=> NSW, NSWE=SSR_SA — NT,NT"SA,V — NSW,NSW=5V[SA — V]

We can continue this process until we eventually remove the arc SA — NT from Q. Enforcing arc consis-
tency on this arc removes blue from SA’s domain, leaving it empty and triggering a backtrack. Note that the
arc NSW — SA appears before SA — NT in Q and that enforcing consistency on this arc removes blue from

the domain of NSW.
L
WA NT Q NmA
1 H| e [mm | |

& q' Rva 4
(© Gvwtosions of afé Consistency.

= After enforcing arc O
consistency:

= Can have one solution left ¢ o
= Can have multiple solutions lef

= Can have no solutions left (and\ @
not know it) ‘

= Arc consistency still runs What went
. . . here?
inside a backtracking search! wrong here?

(5) Zmprovermont kK- consistency (k- A01B)
Ace Consmwdj & Subset ef a wmare generauw(nation of” K- Con‘;ister\fﬂ

= 1-Consistency (Node Consistency): Each single node’s domain has a
value which meets that node’s unary constraints

= 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

= K-Consistency: For each k nodes, any consistent assignment to k-1
can be extended to the k™ node.

AR - | THRAAEN TR KB APRURE R LT PR B2 A
RRARBFORE.. higher K (s more expensive o Lompute.

TOPIC

DATE

° Method 3 — Ordleving /45

HRB, AR (on re fly) F-1ES RECER BB R RIRF LA

BOREE (MrY) -& E
Abivimum Rerrla;.mg Undues) 4
MRV RY T- 48R 0, SRR AARB TR
unassipneol vaviape. | WPRFERMMER) TR
. RERHTER SR TR S AR IRMIE. S10
BhE,

" foil fase” ovdeny

* Method U — Ex-F[oit Stvucture,
(1) Zolea

= Extreme case: independent subproblems
= Example: Tasmania and mainland do not interact

= |ndependent subproblems are identifiable as
connected components of constraint graph

= Suppose a graph of n variables can be broken into
subproblems of only c variables:
= Worst-case solution cost is O((n/c)(d?)), linear in n
®* Eg,n=80,d=2,c=20
= 280 =4 billion years at 10 million nodes/sec
= (4)(2%) = 0.4 seconds at 10 million nodes/sec

SRR (Lev) !\f,ﬂ
least Oonsrrazmr)a Volue 4
FRATRUWBBBMIAN, Select, O value that, pruneg the fewest values flom the domairs
of e Temuny wnassipol vokues. @RI RIARPBEER Rk B Jvaue MR . ©F
250, AT EABE L HIFANR R, AR 2B BRET TR T80
* BREHR, ROBEE) S8R RARRTARMARAEIR (Tunnty arc consisrensy /
forwaml checkiy oy other fitterdy megrools for eoch vatue ¢ find LCV) RPREMRIER. T X
PrEBHR, Y RERARE

Q) e.x-“ﬁee—swwumw(. CSP . ome tnat haso loop in its Consthaint greaph

« First, pick an arbitrary node in the constraint graph for the CSP to serve as the root of the tree (it
doesn’t matter which one because basic graph theory tells us any node of a tree can serve as a root).

* Convert all undirected e m the t e to dlrecled %(%%ﬁ%mdt point away from th %ool Then llnearlze
(or top%lcall& sort)’ sum r) lg[@fi acychc grap?]z)’ln simple terms, this just me%nsi)r er t e
nodes of the grap such that all edoes point rightwards. Noting that we select node A to be our root
and direct all edges to point away from A, this process results in the following conversion for the CSP
presented below:

o=

B oeEe

= E o= om

Remove Rackwarel (ke he arc foivsief to modle. % Congistens)

» Perform a backwards pass of arc consistency. Iterating from i = n down to i = 2, enforce arc con-
sistency for all arcs Parent(X;) —[Xj] For the linearized CSP from above, this domain pruning will
eliminate a few values, leaving us with the following:

"324)\f Mﬁ '5&’?2?& uncorsiart
tnvpog Fedy

O
f&‘ﬁg‘l\ Torwarol

2~’~’.M4‘0| ‘m PR i (Mmab
I o
[} l

« Finally, perform a forward assignment. Starting from X; and going to X,,, assign each X; a value
consistent with that of its parent. Because we’ve enforced arc consistency on all of these arcs, no
matter what value we select for any node, we know that its children will each all have at least one
consistent value. Hence, this iterative assignment guarantees a correct solution, a fact which can be

proven inductively without difficulty.

X30NI

310N

- Moo 1S clepa- {{(% N

TOPIC

AN Worst thox the. mawynies (s i) 4o Qezept

Q:=5

55 d.(-w) —bed »)
&:=5 —ped 1)

57 d(-t)
od:=5

AN TSR ENBRT ARIUE AR FFome Ba0RET ABSLTE WHIBR (W mB AR AN BRRRIMG)

BAKE > B . B b OMERARIS RABTR) o |
; oL R AR 3 % 2R W) jmﬂ%ﬁ rencly 0. bt option

X30NI

310N

Formulas hd “thamgeles Ove juse, QﬂmbolQ. Mo fmmm\d; (Sermantics) 5%

question . YT\SW\TS v,f o (0816 %
‘ D) olotines & Set of vaud frmuwias S
data —> — model —= Operates onTm Semarics For each Gmuda, Spefy o et of modals M) (assiprmans / configurations of, the- world)
I - () Tferene Ruuss Etven f, wnas new Rrmulas ¢ can be odded thot ore gusdonseed 4o fousw ()2
/We sroud Hunt. of £ " o gols of . lofic (m‘f‘wf@{ kpowerlf. Qlous £t wietd,
0S Coxuing Ot Q. S e moolels. [Reason weon]trat knowledfe
B&) -=
Crowledfe bace. (3) f formuias Yes ontoXmont, Kb EQ Already baew ot . encalmons KB F ol
new Sertence OSks : { No cortroolickion, k& F o t Don loeligwe thod, : cortrocliction, ke F Ik
It o kT Questions oloous Ask(d) . T dont, know CONtIgaNs. Tert () . > \) cornad. sonetiany aw - Contiferts
whot i knowrn., wpdlote. K&
* Inbuwikion : TarL @ Set e{ frowlas S St knowledfe Base KB. S JKB) = QKBM({’)
* Bach frwla = A fact thoot we know -
* A Fomula mepresats o get ef medels. The set of oul worlds Sosfijing “thase. onstrovieds.
6.5. Consioley two {51%\(1@ e % ={120um . Roin = W%j S Mkd)
Roin , Roin - Wes
JM(Rain) J (Rain->Wet) M({Ram . Roin = Wecj)
M o o A Modal. (in tre sficol sense) represents
Rmr_o Rmr_o / Roan.® O possibie stoe. of oﬁmrs in -tne world.
t 1 I
* Addiry vnore {pamuas to K Shrinks the set o4 1nockels.
kB = kB O} KB = uk® 1) L)
ARM3 impose anpthas constais o
on ouy wortd. m
- ko P4A%
"""g’:"df& e fﬂ“@“:g*“"%_ e | Do ferna TR, Tt Sut{icss 0 clo -
Pk 0\1 g peserid i:&,(edfz is 0 pross: |Biven: kB, A guery ok <> Transfern (k& AToL) tno CNE - (RPISBRAATRL2HR Ko DR, oL BRORT AMERTKB |V)
usaﬁg Inforeno Mesthods ICmpﬁ_g: \whetnoY 56 EAl <2 Tect wnethor tis CNF is Soisfiakle. MR BREIRBE,
] Covrect - Complete: for every ol
T Pici wi) \j
s fnieleng For euery doxwvable o 16 jon ¥ F ol nolds
Kbpo. (S deriuayle

310N X30NI

Student. bob
Syntax Modet in Fust- Ordor .L)Sfc Can % thoupkt of a é:rafh Represrotion. (2n cage ot unary ond. bmoqj predicosed) . ,\é;‘ ,fj?: obert
Landld Nodes = Objects tn4he world (0, 0+), omeleol. Wit Constant. Symiols. R
formula lovetd Etes = Preclicotes trap toke two arfumants . (abelak wigh Ppredicate. Syminds. withmetic
[— models (+ Predicotes Gat tore one Qafutnant, Com @ uisualized, 08 pdditional noce opels, but Mot So tmportant)
| E—
[e— Fo'rm
[—
= > Modgl in Fugt- Ordlor k%c:
{
liferaiice / Model W wmops Corsiant sgmmls +to o\rleocs wlake) =0, Wlhob) = 02, w(owethmetic) = 03
rules predicode ymiols o Huples of Orects wCknows) =f(o..0z,). (0, 08) j
%) Semartics

I=<¢D &> s 01 Intes preggetion.
D= Universe of v idevprettion. /Domam of e dirscourse. (H4l)
. .A'non—eww:j (e of «(—?N\te) Set 61— avb?braf\r_l’ elomonts e.g, Mohematiol objects, StuclardS , £plol@S, Serkences, exc.

®-

an Zrterpretoion. FunCtion

dafired on tre Sets of Comstonts, Predacotes ond. FunCions SUCh. that :
Foreach c e G, dlo) € D
For each n-axy Prectcate Symeol P, PP = D" forue. fatse]
For each T-ay Function Sbynbol, f. @® (—F)= D"=>D

The SemanticS is Guen by On ntevrexition fanceion , WiACIA ks Q- ﬁnwum{am{ amodol W. D An interpremon finction. Conmests syox & 3
ool veturng wheter W saisfies . (ie. (s f e enw?)

An (e pretation is an infevence. from o Specific point of View.
Two people. Tigns howe the. Some faots, bt weth olrfferent, poins of view, they may Come < Q. olxffereat, Solutn g0 +he Prodlem.

G ED x> xD an n-amy relation over
f) € (D«D>D—>D] on n-aty. {inction. over D
-

7 ~4imes

1 w saweftes f

0 wdnesmsmsfg-f

310N

J1d0l1

3Lva

PINONGICS

X30NI

Soassfoction Relotion
Voxiohle Assifniment Vorgries elmants of the univer of Itepresation
Given on Znterpretodzon. 1=<D,@> a (variawi) assigmmont, &S Q. moppig - V=>D.
* AHEI= <0, > F, R LIRHZRPAIRE O PR BAE TUEH ¥ " T of ¢
“The denctation. of 4. term. = the elemant of D Assigned by I= <D, ¢
WRI L BB R, AP TR Rk A R R B 1, VIt whee we (Vaviares > D] olafines o ~voriakle mop.
The denotation of A term. with free vaviabes
* Rules:
I vixl= veo ofor every o) HHH IRERRAVT . TR HHRRY A xmiki
L ovlftt toll = Hid e, da), whare H=) and o= Lovlltill Grecursvey)
Bl £ BRI 41, on HIRER H R 3% O e Rty
ol RAMH IHEEWAVT . RLRBR
Qazt&(mcm Relation in. FOL
* An Zneepretotion. 1=<D &> sotisfies o formular ok iff for omy ouseigmment 2 V= D, Putol) = true.
A 1= <D, > PR AR, BB A%&«WL%RME/A V- D BR2PAR AR, BH w45 REDE,
BAT: "I?;'\'}'F&C"”?"'"01;'x‘sé'msﬁeot?bj?"l'?aﬂd“\'}”"' Recap:\J-€ [Variaes - D) dlefines & vaviokie gnap.
§ IF oL if oliso semene
o TES if Sisasetof Semencas
* T9F PGy~ tn) iff <o dadE R, whee R=OCP) and oli= T 9l
An otomic Semonce Prolicote (£exm, , -, teima) (S tTue
(ff Hhe dPMain Aeadts thos Ore the. ievpretoaong Ot IM, v, tema
axe in the yelodion thow Is the expretodion. of Preslicoke .
© vk thi=t) 6 Tvlitl equats T, vital
* L vk ff I v ol
* Lk Ab) ¥ Lok ond LUEP
* 1.vE (vB) ff Tkl or IT.wEp
* T,0F 3% ff frsmedeD, I VRO, where i s ke W ecops that P (X) =l
3AA 1S true tn @ model
iff Aheve is o domain efoment, ol in the model Such that ¢
A IS BruQ. in the Model When (s ttexpretes by ol.
NAEAREPHE, Wh BVRGARDR) Tk~ Tk oL ARBRAA) K x BB LR, B poo B
« I,vkvx & iff frauded, IViEA
% Rudes tel us how e brush. value of O Serence. olepencls o the maarin. of the monloficol gymivals.
K2R %7k P Sentenazs 2R BAP RS Je% Ad tsasa;mrﬁed g I, ten (B ATL) (s 110 cnolepencons, of why o is -t omdl whoe, § 1.

L[A/A] = o with ou free oturances of % Teploel by . Baf o}

310N

J1d0l

3Lva

X30NI

M)

() Jofical Bkt N Eaodlment 33083
Ssimpliee/evwl(s oL (or Lis o LoSrcaLamveetuenca_ﬁf $): S E o rf‘f for au I. i—f’ Il=§' then IF&
* Cmotherwovas) fov au 1. 1 FS U {ol] Sigtem. oloes JUOT e 0eaass o tha ieprewaton of 4he
or SUT A is unsatafianle. nonigial Symiols. as iterclal oy e usert o (USe. Zmplictipn 11
* Mote: @ foh v, dad FoL iff F (A Ada) DX H e, topicction H1R) valictiey

(5) Convert

* Motagion AR,

Co

Tyxd

Elael's

9.3.

e‘g .

i b HmaamRR A RRR Ry MR
RY AT IIRRAER S, , , oln PIOEHRADE, Rotfol o] BBOL.
@ BB ATEERYSAABRMRR, 1250 @RI oot Fer) M 72 ARE A 1R (Ppailimoctel RBHAFH monloticol it UK IR)
HAAMPAERIEE, Dot (foto) | Mammal (fioo) - FHABHHL , BRUpAT) 04 R D) 0 Mammol (%) B RG: . BR Pog) ¢ & (Mamman)
Ha: Y (Do O ommal (1)) ¢s represted i S Then: S U {08 (fio)] | Marmmat (i)

® ks F - 0. consequance. of one's loelieves iol| kB Fd
1 —
exXPUCt Rnowledge wfum kAw(edrz

A CNF &5 o comjunction of c(guses
" Proposttional, wff ol to an "ol in Conjunctive. Nowmal. Form (CNF)' Such thot, l:oLsdJ

Cclaused T 3 empty Clonse, Tepredents FALSE

(PVa%)AT AS) 15 TepreSerted asf[P, ~g3, 1), (31§ {formulos] {3 empty rmuta., vepresents TRLE (AATOTHRIEEEROR)

nversion rules:
o Eliminate »: =70+ J)‘/_*(gg) * Eﬂetfmmiﬂ—élmnﬂﬁeot varopes Oxe Tepamo by Skolem Functions Tah B LRARRS WA HX
Ty . fog f0% Skolem fLAYA RN TR A AT AT
e Eliminate —: g e | e. E‘WJ R Y) = vy Ra.y) a@%ﬁa
. . 2(fAg) TR B =
® Move — inwards: —77=] BERMERERTRRN, X RN TN %3y RL%Y) = Y% R¥, fi0)
e Move — inwards: (/Y9 T1y. T V%VJBZ REXY.2) = VX VJR(%,\), \C’LK’\}))
~fA-g By #8
. Eliminate double negation: _‘;f R(ZI zmy) ;A;)l;T;i:g”SRlilsthiiz:rt‘i;n"and why is it ok to work with skolemized formulas when

. h NE, HEBERERAERCEER)
e Distribute V over A: ~LY(9/h) -

(fVa)A(fVh) y = f(a)
""" " Skolemization replaces every existentially quantified variable x by a new function symbol whose arguments
o I FEAR are the universally quantified variables, in whose scope x appears. Skolemization is ok because a formula is
O QQ’NUT\L 'VO,TLO)O[QS 10 mm 'HUUYL g&m@ﬂ oY Y‘EG’? vaE satisfiable iff its skolemized version is satisfiable, and Resolution is a test for satisfiability.
Vay ... Ve R(z1,. .., &n, f(@1,...,20))
3% [P(%)] A Q_m(’) 1 ndt(Z1, ... Tny IREREE)
32 (PRINAQW) 2 . Mow variohle RE. R U Skolem R

* Move V5 to the left. Universol quaneiers on variokles are simply omitted 05 unolerstood

Yo Lol B3

310N

J1d0l

r

3Lva

X30NI

e Semantic Entailment oaTE

1. Farmammg O Juamans vauw*ﬁ-. Semondic. Entpikmant

Let ¥ = {py.ps, ..., P, } be a set of premises and let o be the conclusion

that we want to derive. In general, the question of entailment for first-order logic is only semi-

3 semantically entails a, denoted X E a, if and only if decidable, that is, algorithms exist that say yes to every entailed
j A TP Pad (S Qlso . medet Bt ol sentence, but no algorithm exists that also says no to every non-entailed
. enever all the premises in ¥ are true, then the conclusion « is'true.

sentence. Resolution is an example of such an algorithm.

= For any truth valuation ¢, if every premise in ¥ is true under ¢, then
the conclusion « is true under ¢.

= For any truth valuation ¢, if ¢ satisfies ¥ (denoted ! = T), then ¢ T%g%ﬁtﬂﬁff fﬂ kiR mlﬂ*ﬁ%% mﬁ%@"\% “’;QL“
satisfies o (af = T). D R Ja it .2 A % "
= (py Apy A ... Ap,) = s a tautology. '{—R‘X.%ﬁﬁ“ﬁtﬂé TAFm kBq“*%lz %1%6:)1% 2\% 2

(.0 Resolucon ReRBBRAT KB 4352 BARD,

If & semantically entails «, then we say that the argument (with the

premises in ¥ and the conclusion «) is valid. 4@2\%@% &hv\,/ﬁ%@ g‘% 2\2&%&{%
= Q) .
Q. PSOUU\% or CU,CPTOU' Ertailment, * Resolution does not always terminate for first-order logic.
C l) PT z . [! s |-_—OL * If KB k= S, then resolution will eventually produce EMPTY (= FALSE).
OUU"& entouls d"') . . * If KB ¥ S, then resolution will not produce EMPTY but might not
T. = Usihg a truth table: Consider all rows of the truth table in which all of terminate.
the formulas in X are true. Verify that « is true in all of these rows. * Thus, if resolution has not terminated after x hours (for any given x), one
does not know whether it will eventually produce EMPTY or not. One
e Let £ = {(~(p A), (p = @)}, © = (—p), and y = (p ¢+ q). Based on the can’t just wait and see either since it might run forever.
B 8' truth table, which of the following statements is true?
o Sreamdy (,Leinx tiuh tables o prove entaimont oloes NOT work, for
b-ZEzandX £y (AR — :
¢ X FaandXEy A ERABR
d X FAzand X Fy.
plalCra) [(p—g [z=(p |[y=0cq
00 1 1
0|1 1 1 1 0
1o 1 0 0 0
1)1 0 1 0 1

T = Direct proof: For every truth valuation under which all of the premises
are true, show that the conclusion is also true under this valuation.

z':Aq B, z':A . MR R

é.g. (1) Semantic ‘P’Os‘f- e‘f ZE® e ;};ﬁ;m@aﬁﬁ
SuPPQSe thar IF=, Y
4. BIEHSHI
becouse o![--t)\l'l'wo Ossuampong. we nowe. TEA=B and IFA AT

Bj clofinition, the Stodeymant IEA=B muans that
IEB® whenever IEFA, SoIER

(li) Formalize “Norma Jeane Baker is a daughter of Marilyn Monroe’s parents.” and “Norma Jeane is not
a sister of Marilyn.” together with the needed background knowledge on relationships as first-order
sentences. Provide a semantical?| proof that “Norma Jeane is Marilyn.” is an entailment thereof.

1=<D. ®>
©. Constarnts: O(NI) €D O(mar) €D

X30NI

310N

Functons : & (Paronw) € P->D
Predicoge : ® (Sicter) € DxD Tuwd= Voo ofy ey o) T TPERRAVT SHxRMHERY HmRIA
c L {4l = Hidio da), whoe He &) and o= Lvlltill Crecuswesy)
® (Oouger) < DD T HRAREE O i
¢ (Femar) <D - os BAAH THERWAVT, SHumHE

Premwges: @ Dougier (WT. Pavent(Mar))
® ~Qiteer (WI. Mar)
D Dougaey (%) = Temale () A Y = Powent (%) A Y # %
© SQigertny) = Female () N\ Porent (X) = Pavencty) A Y X
k6 -{0.0,@.07]
Cleam: KB & (N] = Mar)
Proo: Let ol= Q(ND), B= @ (Mar)
{: 1| Pavertlaka) | = O (Parens (dfiay)) = P (Porent(B) ©
IFO <1y € Payuer) @
IF@ (B> ¢ P (Siweer) ®
1k® o> € O Dagnen) ff de Olfemate) A A~ pagenscl)) A ol# ol
IF@ (dd>EOSster) iff dED Famat) A D(Parers(ol) = DParentlol) A ool
Fom®,®: <> € OO)
Ferato () 1 - fmensCa) A 47
Trom®: (B> & & (Siseer)
7 (Femate @) A Pavent ()= Pavens (B) A 6= 8)

\'_V“_J
cloes not holol

TOPIC

DATE

.

1 ais

(v) ,
3 akE

4. o and § are equivalendl if and only if the sentence a = § is valid.

5 alE

valid if and only if TRUE |= a.

. For any «, FALSE |= a.

A if and only if the sentence o D 8 is valid.

f if and only if the sentence a A =8 is isfiable.

(Pros} oy conroclitkion.

"For any sentence 6, let Mod(¢) = {I | I is an interpretation such that I = ¢}. Two sentences o ind § are
oquivalent iff Mod(a) = Mod(8).

(a)

()

6>

o is valid if and only if True |= a.

Forward direction: If True |= «, then « is valid.

By definition, T'rue |= o means that « is true in all worlds where T'rue is True; this is
all worlds. Thus « is true in all worlds, which is exactly the defintion of validity. So o
is in this case valid.

Backward direction: If o is valid, then True |= a.

By definition, if « is valid then it is true in all worlds. In this case anything entails
so clearly True entails a.

For any a, False |= a.

Recall the definition of entailment: p |= ¢ means that in all worlds in which p is true,
q is true as well. So, False = o means that in all worlds in which False is true, a is
true. But there are no worlds in which False is true! Clearly if there are no worlds in
a set, then that set satisfies the condition that « be true in all worlds in that set.

« |= (3 if and only if the sentence (o = f3) is valid.

Forward direction: If o |= (3, then the sentence (o = £) is valid.

By definition, & |= 3 means that 3 is true in all worlds in which « is true. Thus, in all
worlds in which a is true = 3 holds because both o and 3 will be true. We must also
consider worlds in which « is false; in these worlds, & = (3 also holds by definition of
the falsehood of .

Backward direction: If the sentence (o = (3) is valid, then a |= 3.

If the sentence (@ = () is valid, then it is true in all worlds. Thus, for every world,
it must be the case that either both o and § are true, or « is false. This is enough to
tell us that in every world in which « is true, [is also true, which is the definition of
entailment.

Tor o intey

/ Can Prove s Wweth. trutin tobleg
A=p fﬁ”)ot=>€ and. B>

b> Q=p is vaud ioff ol2B ard PO ol are valiol.

”&v@ n By

ons I,

IFCeup) A TE(puA)

((Il=“ol) v (IH))) /\((I EB) v (Il=ou)

((Il="'d-) v(IH))/\(IF“?)

,
((1\2"01) v (I\=@))/\ (TEQ)

(tha) nakg) v(@re) alika)

For aw intevpretaiong , TFL iff IFB.
Mool(h) = {1] 1 is an iterpresamon st. 1k}

= Meod (p) = f1]15s on e preation. Sit. IF@j

Mool () = Mod ()
o and B are equtvolent O

2y olafiniton, oL AR (s unsagsomle mmeans tnax tneve is VO Interprecotion. T, st T Ean-g

T LA i vakel
IE (A8

IE Wy

Il avg

For ou tnterpretasons I,
For ouk tsterprevasions I,
For QL iterpretasion T,
Fox O sty prexations I,

Thot means for au nterpresations I, "ol v is vatiel

for ou interprenations I, 1 ol D@

= Proof by contradiction: Assume that the entailment does not hold,

which means that there is a truth valuation under which all of the
premises are true and the conclusion is false. Derive a contradiction.

Proving that ¥ does not entail «, denoted ¥ ¥ a:

= Find one truth valuation ¢ under which all of the premises in X are

true and the conclusion « is false.

X30NI

310N

X30NI

310N

TOPIC {‘ leg 4% ‘ not Yet specified
Zﬂ'm le 9 ;HQ/%Q*QIQJ weednebner <6 youd
1. Defimtion - /
If fi i fe. § are frmulos thon tha following. is am infevence. TulL : 3
, 5 759 > %D, v, APE
Q. Modus Ponenc (RIREYA) Zrderence Rute. - 2 ETEY R
2 PoiPe, PA-ARIDG
* For any proposstional, symbols p and 4 Mare. Generoy :)
* ef Rajn: 2t vainid. Ro, Roia= Wet
Ragn = Wet, : 2{' it's voining . then 'S wes. j Wes
Wer: Therefre, 1t'S wet.
5. Inference Aorithm.:
é Algorithm: forward inference Given a set of inference rules (e.g., modus ponens), we kB dg{(,UQS/PwVQS ol (KB o)
) can just keep on trying to apply rules. Those rules .
Input: set of inference rules Rules. generate new formulas which get added to the knowledge [ﬁ‘ oL ge*‘“ aoldea
Repeat until no changes to KB: base, and those formulas might then be premises to kR (‘0\\1 Yol D(JPH\l\S Todes)
Choose set of formulas fi,..., fr € KB. of other rules, which in turn generate more formulas, etc.
If matching rule Mg’& exists: “th " 2
Add g to KB. * evmsaﬂsimaftmwwsesmm he k8,
then You can. ool the. ConClugion o the. K.
r@

Starting point:
KB = {Rain, Rain — Wet, Wet — Slippery}

Apply modus ponens to Rain and Rain — Wet:
KB = {Rain, Rain — Wet, Wet — Slippery, Wet}

Apply modus ponens to Wet and Wet — Slippery:
KB = {Rain, Rain — Wet, Wet — Slippery, Wet, Slippery}

Converged.

Can't derive some formulas: -Wet, ~Rain — Slippery mj a‘ﬁ‘,'-)%‘k?)?‘\ Modus ponans ﬁ(&PRlPJ

4. Desiderata for inference rules
Syntax:

Inference rules derive formulas: KB F f
Semantics

Interpretation defines entailed/true formulas: KB = f: .
/ - Sorortics Gves us amoqecm/emt«maftm_

T

2 sex of Satsfable motals
q"ﬁf formula £

o HRARARR| 88453 - AABN. B0t 5B B Mlvepeased ogpliconion) BIEARRY, INAEK ~ %@ frmalas (.. VIR R0 TG (o8 2B QP R 5AE 2R A
{f| ko) GAFNBT-4a1R0RH XN ARIRRIE ©
e_%. Ce, P(%tm)}.fm, 2] C“P(‘/,-ﬁw),a).]

m(iable with 4
= . omstimas [) (S not olexivoble
6= {x/b. ¥/§0. 3/a. ‘”/b)j Jretols P(%“"))' fuo, a) } berruse of 0 Spatsfic. SubSttsROTS.
but oo with

0.={x/fw, ﬁ/gtfm), 3o, w/{’c%)j Yieads P(%({m), f(fe), &)

* Most General Unifier (MGWL) RrBls - MAUIAERM® it dumn - Rov ek
0 isa Mau of the Gterals [, ond (2 off
° 0 wufes Loandl [ORBERI LAY L, ARAF L Aol 75 EAVRR T A0%.
&8 0 REL * {m eveny untier 0" e 5 & Substituton ° St o= 68"
UIMTERL- 6’ BpTIwRBYS O XT ASH Rk O* JARE (e L HEBs unifier KD RAIX © ROUE) DA 482\ B,

I{ T sa tterol. Oisa substtation, ton 10 (S tne resust of +re gwlstiturion.

If Ciso clause O isa subsitution, then CY (5 € TOus of £ne Substitusion
es. 9=z/a \//3(7(.&1.9-75 P2, fouy))Q = Plou3, fua.y))

o Cvound. Gterol = Q. Gteval without, Variowles

A Gteal 1 is an castonee of I' if tnare s 2 © 6. I=T0

TOPIC DATE

Computing the MGU for a set of literals /;: #paia ik, A WARMDE L HEAREH R RINL 298
© Startwith § = {}. ZRR AR MIRE

© I all /;0 are identical, then success: 6 is the MGU.
Otherwise look for the disagreement set DS, %452 4#%" DS
eg. P(a,f(a,g(2),... P(a,f(au,...
DS = {u,9(2)}-DSharivk = 7 2 ARG W% L § 2 WD
© Find a variable v € DS and a term t € DS which does not contain v (occur

check). Otherwise abort: not unifiable. FDSPFR, NGB Ao 4 20shE R
Q 0=0{v/t} ARG (3% 5 Frde)
© Goto 2. AP FMOBRAIRL.

[, P(geo), foo, 2] (9P, fwna), -~] AMGU:

32: DS= Hm. Y, % w, 2, 0.5

S3: 9=1y/3:}3

St WAy [, P(§ea), fo.] [~P(J0), fwn,a) =)

y

82: D3=§%w. 2,43

D: 0= a/wj

SG: [, PG, fuo. 2] [”P(g(w)), fwna) -]
y

$2: DS=92.a}

53: 0= §2/aj

Su: [, P(%(w))lftw),a)] [“P(th)), fona))
D 0= fx/w, y/gw. 2/a§

First, we think about proofs in a purely syntactic way.

le 'K;/b: 7/3[b): 9-/0-: W/b)j = 9§W/b3 A proof

Ql = W/’FL%)) \j /3c 'FC*))) :Ll/a-l W/‘f‘("b)s = 9 {'W / 'ﬁ.i)j = starts with a set of premises,

R N = transforms the premises based on a set of inference rules (by pattern

jgi-tm’l&'m'hk @ﬂk%mm'}i\: matching),
* How does [{ f : KB |= f] relate to {f : KB I f}?\—/ * and reaches a conclusion.

| Herte Ykyp @ orsimply YFg
J Cagel - We meves oueklow <AL §oss Cosed, : We il upthe §0se 40 e brim
j’m <tyubin_ Definition: soundness: ond. 'POS?“JM g) ouY
A set of inference rules Rules is sound if: Definition: compléteness
Blﬁ O‘PPH“% ZAM w {f:KBEf} C{f: KB f} ’VA set of inference rules Rules is complete if:
WeITE fiing up the. glass Wit water o UKBr 2 U K87
- —_—
TN b U bructhc Bl

Sound - ot dexive Whole trctiv

aﬂj {od—@& %mm : e QUL tyue formwlas
Every devtuarle sontence. cs o logucod, Complere.. olext o
wn@-‘lumcn- °’f -the KB Euew logrcal mgw af— e kb S cloxivane

bﬂ the El\:(eTCILca methool,

X30NI

310N

TOPIC

DATE

s Rain, Rain — Wet

: Wet

(Modus ponens) sound?

M (Rain) N M(Rain - Wet) C? M (Wet)

Wet Wet Wet
0 1 0 1 0 1
c0 = 0 c0
5 5 5
o 1| o 1 o 1
Sound!

We @n clexive Wet usig modus porens

o To Check, Entoxment,:

MOP OM the Frmulog Yoo Semardies - Landl
(e the set of sanxflub\a'rnoduc)

o 1f we hod. other frmulas i the €, that wowld
meduce. both Sicls o S by the Soame. Omount
omol won't O4fect the fact -tnot tne relodion
holols . Therejove,, tss Tu ¢ ound.

Wet, Rain — Wet

- sound?
Rain

Is

M (Wet) N M(Rain — Wet) C? M (Rain)

Unsound!

Recall completeness: inference rules derive all entailed formulas (f such
that KB = f)

- ‘ -
Setup:

KB = {Rain, Rain V Snow — Wet}

f=Wet

Rules = {%} (Modus ponens)
Semantically: KB |= f (f is entailed).

Syntactically: KB I/ f (can't derive f).
Incomplete!

[Completeness is trickier, and here is a simple example that shows that modus ponens alone is not complete,

Isince it can't derive Wet, when semantically, Wet is true!

Fixing completeness

Option 1: Restrict the allowed set of formulas
propositional logic
Make e water glass Smauer

propositional logic with only Horn clauses
Option 2: Use more powerful inference rules

Modus ponens

l POW mot vigwousﬂ iMoo the sorme Sloss

resolution

X30NI

310N

roric Regolution J34% 74 TR 2GR FEE S B0 R AR 408y

1. Resolution Rule i Propositional, Legic

© HERREE. PEBAUI R TIR (RAGERATIRN DVF) 45 $AMRIBA LR 15} AL ™ 1310
Reso(ution Rule. in. Propositional. Legec/ (s asiyle vold. ¢ «\{e;enco_mte/cmm produces o new cluse /
tnlied. by two clauses containind Co lemanafny (HEras.
e 3ot the left resobed Gtemt N e mesolved. (itexal
cufps, f~pJuG

entails CUCy

the Tesolvent, 6f the thput Clowses elative 0 P

3% 4 A RAIDMARL" o) BRTDRIS (resolvent)”
Speciok Cose: [PJ and CvP) resove o €1 (te. G ond G are empty)

% Definition: resolution inference rule

V-V VD, pVaV---Vgm
f1V~"\/ang1V“'ng

Hence {Cpa.Copad E Fate. or {Cp1.CvpaS is unsatisfioxle. @Rﬁt&ﬁdaﬁmlz\%ﬁ%%w 19, REBRAXBITERRN.

theorem : S >0) iff SEFue (e Sis unsossfonle ff S = J)
* Resoution s Sound andl complete. for C 1
*If S=>cC. tren SEC (mewer cloes no OMausoys Yolol)
ReSolUonts Qre. cmpeotions of the tnput CLOUSER.
Suppose I=(p V a) and IE=(—p V B).

Case 1: Let I=p. Then /=3 and hence /[=(a V §).
Case 2: Let I£p Then /l=a and hence /=(a V 3).

Therefore, in any case, li=(a V 8). Thus {(pV @), (-pV B)}=(a V B). -ﬁﬁfl«aﬁ/ o Premice Y%, P > Qx)
Q. Resolution Rwe. in FOL /l\m’d‘i/m cnor Prenuise P ()
480 / Conclusion Theretore, Q.(0)

* AERR) @I B Zrference. Rule B B 52 BT (Syllogism,) BABELD TR - BAARR)
WRRWBERA, <> UDRBEE ST (CVF) < RiofRaf
< MR HOHSERE 1D
- D3RR DRI AR L -43IDTRE e, fud *afoq%ﬁam ﬂam%mz@h
.« BHRARS- RRT, 0y unkound varioleS olso occur i othex
TePlae Aham. With thair ound. vaues (terms) +there @s weu,.
.0.: Clauses weth voxiables :

A (iteral weth. vaxiobleS represents AL its instonas . We Qulow ivferenca ouer DU \Stomers.

Hence.. gigen: [Px.0) , ~otx)] ond CaPlhrY), ~R (b, £y))]
Since [PCb.) s ~0Lb)] s an instona of [Px.0) , ~v@u)]
Capinr), vR b, f)d s an instonce of CoPibr))s VR Uo.fey)]
We'dl G o infer L¥@Lb). ~R(b, fian)]
© SRE-WARA, BRAEDTIOT RTMRD 2 1H(10T 4R v Bitaik.

. I?esdmnkuuc:znbegenzmumbm FOL to:
CI U{I\S, fNIz3UC19

(CucC)b
where 0 is o MGU of T ond T If two dtterert Clauses Ci andl G conzaun. Sama. Vomable X,
omdl G andl Ca howR no common. "variobles W Com erename. X 0 Some other X in oneof G ot Ca.
Unifying QLX) with 1 QLY) 1mears thos

ef. IPR) V@) X and 3y become the SOMe owioble Gniway

vE, P > Q) | cy 20w v Ry) Substitutis s 10 A vemoiming clauses

Y%, QX)) > RO R XARER% to mawm it cleor that andl. comisinig Cham §iues tL Conclusion.:

Vorphes in oifferent clause cae olferendt P& VRIX)

In P: { "6 1S on unbound. varioble

v, P > Q) o, [FPE vV e i ‘o' is o bound varioble (term)

5ra) D Unedyjing the two procluces the. Subgertuion %/ 04

F34-®P, PR TRBREAR 4T ERR O
A4t Q)

—

X30NI

310N

POP: A Partial-Order Planner

In this lecture, we look at the operation of one particular partial-order planner, called POP. POP is a regression planner;
it uses problem decomposition; it searches plan space rather than state space; it build partially-ordered plans; and it

operates by the principle of least-commitment. .Pog,tm Commitment, unese ’ﬁ"m
In our description, we’ll neglect some of the fine details of the algorithm (e.g. variable instantiation) in order to gain
greater clarity.

1 POP plans

We have to say what a plan looks like in POP. We are dealing with partially-ordered steps so we must give ourselves
the flexibility to have steps that are unordered with respect to each other. And, we are searching plan-space instead of
state space, so we must have the ability to represent unfinished plans that get refined as planning proceeds.

A plan in POP (whether it be a finished one or an unfinished one) comprises:

« A set of plan steps. Each of these is a STRIPS operator, but with the variables instantiated.

* A set of ordering constraints: S; < S; means step S; must occur sometime before S; (not necessarily immedi-
ately before).

« A set of causal links: S; —— S means step .S; achieves precondition ¢ of step .S;.

So, it comprises actions (steps) with constraints (for ordering and causality) on them.

The algorithm needs to start off with an initial plan. This is an unfinished plan, which we will refine until we reach a
solution plan.

The initial plan comprises two dummy steps, called Start and Finish. Start is a step with no preconditions, only ef-
fects: the effects are the initial state of the world. Finish is a step with no effects, only preconditions: the preconditions
are the goal.

By way of an example, consider this initial state and goal state:

al-ie

Initial state Goal state

These would be represented in POP as the following initial plan:

Plan(STEPS: {S1: Op(ACTION: Start,

EFFECT: clear(b) A clear(c) A
on(c, a) A ontable(a) A
ontable(b) A armempty),

S2: Op(ACTION: Finish,
PRECOND: on(c, b) A on(a,)},
ORDERINGS: {S1 < S2},
LINKS: {})

This initial plan is refined using POP’s plan refinement operators. As we apply them, they will take us from an
unfinished plan to a less and less unfinished plan, and ultimately to a solution plan. There are four operators, falling
into two groups:

* Goal achievement operators

— Step addition: Add a new step S; which has an effect ¢ that can achieve an as yet unachieved precondition
of an existing step S;. Also add the following constraints: S; < S; and S; — S; and Start < S; <
Finish.

— Use an effect ¢ of an existing step S; to achieve an as yet unachieved precondition of another existing step
S;. And add just two constraints: S; < S; and S; —— S;.

« Causal links must be protected from threats, i.e. steps that delete (or negate or clobber) the protected condition.
If S threatens link S; — S;:

N

//\
T

— Promote: add the constraint S < S;; or

— Pgmote: add the constraint S; < S b/ ™ =
conflitt clamotion. =l
© Promation
The goal achievement operators ought to be obvious enough. They find preconditions of steps in the unfinished plan
that are not yet achieved. The two goal achievement operators remedy this either by adding a new step whose effect

achieves the precondition, or by exploiting one of the effects of a step that is already in the plan.

The promotion and demotion operators may be less clear. Why are these needed? POP uses problem-decomposition:
faced with a conjunctive precondition, it uses goal achievement on each conjunct separately. But, as we know, this
brings the risk that the steps we add when achieving one part of a precondition might interfere with the achievement
of another precondition. And the idea of promotion and demotion is to add ordering constraints so that the step cannot
interfere with the achievement of the precondition.

Finally, we have to be able to recognise when we have reached a solution plan: a finished plan.
A solution plan is one in which:
« every precondition of every step is achieved by the effect of some other step and all possible clobberers have
been suitably demoted or promoted; and
« there are no contradictions in the ordering constraints, e.g. disallowed is S; < S; and S; < .S;; also disallowed

is S; < 8;, 8; < Sy and Sy < ;.

Note that solutions may still be partially-ordered. This retains flexibility for as long as possible. Only immediately
prior to execution will the plan need l/inearisation, i.e. the imposition of arbitrary ordering constraints on steps that are
not yet ordered. (In fact, if there’s more than one agent, or if there’s a single agent but it is capable of multitasking,
then some linearisation can be avoided: steps can be carried out in parallel.)

2 The POP algorithm

In essence, the POP algorithm is the following:

1. Make the initial plan, i.e. the one that contains only the Start and Finish steps. [(‘@\ Favt & '{-’letil'\,

2. Do until you have a solution plan

+ Take an[unachieved precondition] from the plan; achieve it Ak Action P ¥5: AR BA pre-con.

* Resolve any threats using promotion or demotion

But what the above fails to show is that planning involves search. At certain points in the algorithm, the planner will
be faced with choices (alternative ways of refining the current unfinished plan). POP must try one of them but have
the option of returning to explore the others.

There are basically two main ‘choice points’ in the algorithm:

« In goal achievement, a condition ¢ might be achievable by any one of a number of new steps and/or existing
steps. For each way of achieving ¢, a new version of the plan must be created and placed on the agenda.

Question. A condition ¢ might be achievable by new steps or existing steps. When placing these alternatives on
the agenda, why might we arrange for the latter to come off the agenda before the former?

* When resolving threats, POP must choose between demotion and promotion.

(Some people think that the choice of which precondition to achieve next also gives rise to search. But, in fact, all
preconditions must eventually be achieved, and so these aren’t alternatives. The choice can be made irrevocably.)

Provided your implementation of POP uses a complete and optimal search strategy, then POP itself is complete and
optimal.

However, POP’s branching factor can still be high and the unfinished plans that we store on the agenda can be quite
large data structures, so we typically abandon completeness/optimality to keep time and space more manageable.
Search strategies that are more like depth-first search might be preferable. And we might use heuristics to order
alternatives or even to prune the agenda.

In the lecture, we will dry-run the POP algorithm.

Afterwards, convince yourself that POP is a regression planner, that it uses problem decomposition, that it searches
plan space, that it build partially-ordered plans and that it operates by the principle of least commitment.

[START }

clear(b) & clear(c) &
on(c, a) & ontable(a) &
ontable(b) & armempty
7 S ppgc,a), clear(c), armempty
//’/,’ \\ on(c, a) & cléa?(c) & armempty
S [UNSTACK(C, A)}
//’/ // clea{\(b) —on(c, a) & ~armempty &
e)/ v ~—clear(c) & holding(c) &
L)/ AN clear(a)
clear(c) ontable(a) | holding(c)
7 / PR v
L,) _cleat(a) cléar(b) & holding(c)
[STACK(C, B) j

, -
7 "/

clear(a) & ontable(a) & armempty “

[PICKUP(A) J

—ontable(a) & ~armempty &
—clear(a) & holding(a)

holding(a),

S v
“* clear(c) & holding(a)

{ STACK(C, A) }

—clear(c) & —holding(a) &
armempty & on(a, ¢) &
clear(a)

on(a, ¢) - - _

\\4\

-

on(c, b) & on(a, c)

[FINISH

Exercise (Past exam question)

1. An AL planner operates in a simplified Blocks World. The only operators in its repertoire move a block x from

the table to another block y:

Op(ACTION: FromTable(x,y),
PRECOND: onTable(x) A clear(x) A clear(y),
EFFECT: —onTable(x) N —clear(y) A on(x,y))

and move a block x from block y to the table:

Op(ACTION: ToTable(z,y),
PRECOND: on(z,y) A clear(z),
EFFECT: —on(z,y) A clear(y) A onTable(x))

Here is an incomplete plan of the kind that could be built by the POP planner covered in lectures:

on(a,b) A clear(a) N onTable(b) A onTable(c) A clear(c)

- -
- -

| on(a,b).~”

| / Y
onTable(b) ¢ iﬁl’:W)
clear(a)

on(a,b) A clear(a)
ToTable(a, b)

1 —on(a, b) A clear(b) A onTable(a)

clear(h)

--xV

onTable(b) A clear(b) A clear(a)

on(b, a) A on(c,b)

Start

-

Finish

(a) Give the initial world state and goal of this plan.

(b) Copy this plan onto your answer sheet. (Copy just the boxes and arrows; there is no need to copy the

preconditions & effects.)

* Choose an unachieved precondition in the plan.

* Add a new step to the plan to achieve your chosen precondition. Draw it onto your copy of the
diagram. Include its preconditions & effects, all order constraints and all causal links.

« If your new step threatened any existing causal links, then state which link(s) were threatened; state
what extra ordering constraint(s) you added to protect the threatened link(s); state whether what you
did was an example of promotion or demotion; and briefly explain why the extra ordering constraint(s)

fix the plan.

(c) Is the plan now complete? Explain your answer.

Use the following predicate symbols:

copier(x)
robot(x)
noToner(x)
hasToner(x)
hasPaper(z,n)
at(x,y)
—— order constraint

2. Write STRIPS operators that would enable a planner to build plans that it could give to photocopier repair robots.

2 is a photocopier

x is a robot

2 has no toner

2 has toner

x has n sheets of paper
risaty

You can also use the predicates <, <, >, > and =, the function symbols + and — and the constant symbols 0
and 1 if you wish, all with their usual meanings from arithmetic.

c .
******* = order constraint and

causal link for

precondition ¢

You should write the following three operators:

* replaceToner(z,y): To replace the toner, the copier (y) must be out of toner, a robot (z) must be at the
copier and it must have some toner, all of which it puts into the copier.

« insertPaper(x,y,n): To put n sheets of paper into the copier (y), a robot (z) must be at the copier and
it must have at least n sheets of paper. (You should assume that the copier has no maximum amount of

paper.)

» makeCopy(z,y): To make a copy (using up one sheet of paper), a robot (x) must be at a copier (y) that has

toner and that has at least one sheet of paper.

Which parts of the algorithm for partial-order planning (POP) may require
backtracking?

Choosing an operator and resolving threats may result in backtracking. (Selecting a subgoal does not.)

E8FFIF%I (Partial-Order Planning, POP) EiiE—
MIEATZETNIRATENANNRA, FRIRELES
B4 —RTIEHELOAZISE BARRS A0S, POPSE
AN AR T4 M RS RIERZ, MEA
WIEZ ERSEMEDINFRR, X
ZRWHE— S B, EXNEEF, ThE
(backtracking) HIERD EEEIF:

ledkirg v & soluion.

ARENERT

ENfEIESE: TERIERET, HRIRFSENEIER
FRRZRIAF BAR. WMRFMEMNESBTERRAPR
FREH—SREBIRTS, BATERERMTEE
IR ER, S EABAIENIE.

ERXARMEIL: HTRAIBRRS, BEREETL
EZENERXFRHE, NRZIMELEREZERIER
KEAMBARY (a0, FATEELNFEIERT
BIRVAR) , AIRERECHIIERMNR, EMRXLE

t-e. plon Steps Wit undulfidaol Preconctitions
It oloes NOT mmodesy ia whidh orolet &beoals ar gholen. when

